ENVIRON

September 30, 2013

MEMORANDUM

То:	Tom Moore, Western Governors' Association (WGA) (WRAP)
From:	Zac Adelman, University of North Carolina/Institute for the Environment Ralph Morris, ENVIRON International Corporation
Subject:	Lessons learned from the WestJumpAQMS and the next steps to improve ammonia emissions estimates in the Western U.S.

INTRODUCTION

ENVIRON International Corporation (ENVIRON), Alpine Geophysics, LLC (Alpine) and the University of North Carolina (UNC) at Chapel Hill Institute for Environment are performing the West-wide Jump Start Air Quality Modeling Study (WestJumpAQMS¹) managed by the Western Governors' Association (WGA) Air Quality Program. WestJumpAQMS has set up the CAMx photochemical grid model for the 2008 calendar year (plus spin up days for the end of December 2007) on a 36 km CONUS, 12 km WESTUS and several 4 km Inter-Mountain West domains. The WestJumpAQMS Team compiled emissions to be used for the 2008 base case modeling, with the 2008 National Emissions Inventory (NEI) being a major data source. During this process, the WestJumpAQMS team prepared sixteen Technical Memorandums discussing the sources of the 2008 emissions by major source sector. In Memorandum #8, we described the data and modeling approaches used to estimate agricultural ammonia (NH₃) emissions for the WestJumpAQMS².

WestJumpAQMS 2008 Ammonia Emissions

Figure 1 displays the annual ammonia emissions by source category for the U.S. 2008 ammonia emissions developed by the WestJumpAQMS. Livestock (58%) and fertilizer (28%) are by far the two biggest source categories making up 86% of the U.S. ammonia emissions. The next largest source category is fires at 5% that is dominated by wildfires that were developed by the DEASCO3³ project. Although wildfire ammonia emissions rates are uncertain, the locations and temporal variations of the emissions are fairly well characterized. Other area sources (4%) and on-road mobile sources (3%), whose emissions are based on the MOVES model, are the next two largest source categories. Given that livestock and fertilizer application dominate the ammonia emissions

¹ <u>http://www.wrapair2.org/WestJumpAQMS.aspx</u>

² <u>http://www.wrapair2.org/pdf/Memo8_AmmoniaSources_Feb28_2013review_draft.pdf</u>

³ <u>http://wrapfets.org/deasco3.cfm</u>

inventory, focusing on these two source categories offer the greatest opportunity for improving ammonia emissions for modeling.

Figure 1. 2008 U.S. ammonia emissions by source category from the WestJumpAQMS.

Purpose

In this memo we discuss the key lessons learned during the collection, preparation, and modeling of the NH_3 data described in Memorandum #8. We highlight the strengths and weaknesses of the data that we used for the WestJumpAQMS and present recommendations for how we can improve the simulation of NH_3 emissions in subsequent modeling studies.

APPROACH

The six major components for simulating NH₃ emissions include:

- <u>Emissions model</u> a software system that includes algorithms for estimating NH₃ emissions and a framework for input and output of the emissions data
- <u>Emissions factors</u> estimates of the mass of NH₃ emitted per unit time per animal or amount of nitrogen volatilized as NH₃ per unit time for different types of fertilizer
- <u>Activity</u> animal population; the number of animals emitting NH₃ per administrative unit (i.e. state or county) or monthly county-level fertilizer consumption
- <u>Spatial allocation</u> process to convert administrative unit NH₃ emissions estimates to model grid cell estimates
- <u>Temporal allocation</u> process to convert annual or monthly NH₃ emissions estimates to hourly estimates for input to air quality models

ENVIRON

• <u>Air quality model</u> – a software system that combines meteorology, emissions, transport, and chemistry to simulate the sources, transport, and fate of air pollutants in the troposphere

We reviewed each of these components during the WestJumpAQMS project and developed a list of recommendations for each component. The starting point of our review was the release of the Final Ammonia Emissions Technical Memo #8 on February 28, 2013. We convened an NH₃ emissions working group and held calls on April 24, April 29, and May 17, 2013 to review Memo #8 and come up with our list of recommendations. The NH₃ emissions working group included the following people:

- Michael Barna, NPS
- Lisa Clarke, CO APCD
- Curt Taipale, CO APCD
- Daniel Bon, CO APCD
- Kevin Briggs, CO APCD
- Dale Wells, CO APCD
- Jay Ham, Colorado State University
- Tammy Thompson, Colorado State University
- Zac Adelman, University of North Carolina
- Ralph Morris, ENVIRON Intl. Corp.
- Jim Wilkinson, Alpine Geophysics
- Tom Moore, WRAP/WGA

REVIEW AND RECOMMENDATIONS

Results of the WestJumpAQMS NH_3 emissions working group review and recommendations are included below. Table 1 summarizes these results.

Emissions Model

The Carnegie Mellon University (CMU) NH_3 model is sufficient for estimating emissions from agricultural sources of NH_3 . It provides a technically sound framework for integrating the parameters for the basic emissions equation used for a bottom-up inventory of county-level agricultural NH_3 sources. The major constraint in the CMU model is the reliability of the input data.

Current air quality modeling research is investigating a bi-directional exchange of NH_3 between the atmosphere and the land surface. The re-emission of surface NH_3 is a missing source that we did not account for in the WestJumpAQMS.

Recommendation: Investigate adding a bi-directional NH₃ exchange model in subsequent modeling studies.

Emissions Factors

As one of the two parameters of the emissions equation, the quality of the emissions factors (EFs) is critical for building reliable estimates of NH₃ emissions. The CMU model supports the application of county-specific EFs by animal type or fertilizer. In cases where county-specific EFs are not available, the model defaults to state or national EFs.

Recommendation: Convene a working group within the WRAP for western states and other agencies to compile updated county-specific EFs. Determine the western states/counties that are receiving default EFs in the CMU model. Compare the EFs currently available in the CMU model (version 3.6) and update them with any new data available from the western states.

Activity

Activity for livestock NH₃ emissions sources refers to county animal populations for different types of livestock. For fertilizer NH₃, activity refers to county-level consumption. As one of the two parameters of the emissions equation, the accuracy of the activity values input to the CMU model are also critical for building reliable NH₃ inventories. The NH₃ inventories used for the WestJumpAQMS came from the NEI08v2. In general, the CMU model simulations for the NEI08v2 used county animal populations from the 2007 Census of Agriculture and fertilizer consumption from the Fertilizer Institute's Commercial Fertilizers 2002 and 2007 reports.

Recommendation: Convene a working group within the WRAP for western states to compile updated county animal populations and fertilizer consumptions for 2008 and 2011. Compare the 2007 activities used for the NEI08v2 with values provided by the states and update the CMU model inputs using the data provided by the western states. If new data are not available from all western states, update the CMU model inputs using 2008 and 2011 Census of Agriculture and Fertilizer Institute Commercial Fertilizer estimates.

Spatial Allocation

County agricultural NH₃ inventories are distributed to model grid cells using spatial surrogates. Spatial surrogates are developed from GIS Shapefiles of agricultural land use categories. For the WestJumpAQMS we used 2002 National Land Cover Database (NCLD) estimates of total agricultural land to allocation both livestock and fertilizer sources to the modeling grid. Better information about the location of agricultural activity is needed to improve the distribution of the county inventories to the model grid cells.

The spatial allocation of livestock sources can be improved through the collection of data on the locations of confined animal feeding operations (CAFOs) within each WRAP state. Latitude/longitude coordinates and the number and types of animals at CAFOs can be used to develop spatial surrogates for distributing the county emissions

ENVIRON

inventories to a modeling grid. The following CAFO data are required for developing spatial surrogates for livestock sources:

- Latitude
- Longitude
- Current number of animals by species
- Maximum operating capacity (maximum number of animals)

We used CAFO location information in the WestJumpAQMS to develop a surrogate for livestock sources in Colorado. These data were not available for any of the other WRAP states during the WestJumpAQMS.

The spatial allocation of fertilizer sources can be improved with data on the locations of fertilizer application within each WRAP state. Ideally GIS Shapefiles of the application locations for different fertilizer types would allow us to map county fertilizer inventories to the actual application locations. Alternatively, Shapefiles with the locations of field crops and orchards could be used to improve the spatial distribution of fertilizer sources.

Recommendation: Convene a working group within the WRAP for western states to collect CAFO and fertilizer application locations for the years 2008 and 2011. Use these data to develop state-specific spatial surrogates for mapping county agricultural NH_3 inventories to modeling grids.

Temporal Allocation

Under contract with EPA in 2009, ENVIRON reviewed the recent literature regarding approaches and data available for the temporal allocation of livestock and fertilizer NH₃ emissions for the purpose of determining the state of the science for temporal allocation of NH₃ emissions for use in regional-scale air quality modeling. They concluded that the process-based modeling methods of Pinder et al. $(2006)^4$ and Goebes et al. $(2003)^5$ and the inverse modeling technique of Gilliland et al. $(2006)^6$ represent the state-of-the-science with respect to the seasonal and monthly temporal allocation of agricultural NH₃ emissions. We used these monthly data and approaches for the WestJumpAQMS.

Recent work to integrate the influence of meteorology on agricultural NH₃ emissions presents an improved approach to simulate the hourly temporal variability from livestock sources. The SMOKE emissions model includes two algorithms to generate

⁴ Pinder, R. W., P. J. Adams, S. N. Pandis, and A. B. Gilliland (2006). Temporally resolved ammonia emission inventories: Current estimates, evaluation tools, and measurement needs, J. Geophys. Res., 111, D16310, doi:10.1029/2005JD006603

⁵ Goebes, M. D., R. Strader, et al. (2003). "An ammonia emission inventory for fertilizer application in the United States." Atmospheric Environment 37(18): 2539-2550

⁶ Gilliland, A., K., K.Appel, R.W. Pinder, and R.L. Dennis, 2006. Seasonal NH3 emissions for the continental United States: inverse model estimation and evaluation. Atmospheric Environment, 40, pp. 4986-4998

hourly, meteorology-based temporal variability from livestock sources. We did not use meteorology-based temporal allocation in the WestJumpAQMS.

Recommendation: Use the meteorology-based temporal allocation algorithms to estimate hourly temporal variability for livestock NH₃ sources.

Air Quality Model

Air quality modeling simulates the fate and transport of the NH₃ emissions and produces results that can be compared against observations of ambient NH₃ concentrations. For the WestJumpAQMS project we used CAMx to simulate NH₃ concentrations over 36-km, 12-km, and 4-km modeling domains focused on the intermountain-West. Previous modeling studies of the Rocky Mountain region indicate that NH₃ concentrations are underestimated in air quality models and that the diurnal patterns of the NH₃ predictions are anticorrelated with hourly NH₃ observations⁷. The major issues in the air quality model performance for NH₃ include:

- Measured NH_3 peaks during the day contrasting with simulated NH_3 peaks at night
- Overestimation of NH₃ dry deposition
- Underestimation of NH₃ concentrations
- Poor skill in predicting NH₃ invalidates the models for conducting source apportionment studies of NH₃

While comprehensive evaluation of the NH₃ results in the WestJumpAQMS modeling are not yet available, diagnosis of the cause of the poor performance of the air quality models in predicting NH₃ concentrations should be a focus area of subsequent modeling studies. A preliminary analysis of the CAMx model performance suggest that the summer particulate NO3 underestimation may be due to too low NH3 concentrations since total NO3 (NO3+HNO3) performance is much better and wet NH4 deposition is also underestimated. However, whether such NH3 underestimation is due to too low NH3 emissions and/or too high NH3 dry deposition rate could not be determined.

Recommendation: Conduct diagnostic modeling to determine the weaknesses in the ability of air quality models to predict NH_3 concentrations at sites in the intermountain West. Implement improvements to the emissions processing of NH_3 sources and in the air quality modeling of these sources to improve model performance. The implementation of a bi-directional ammonia flux in CAMx, as is done in CMAQ, is also recommended.

⁷ Rodriguez, et al., Modeling the fate of atmospheric reduced nitrogen during the Rocky Mountain Atmospheric Nitrogen and Sulfur Study (RoMANS): Performance evaluation and diagnosis using integrated processes rate analysis, *Atm Env* 45(1), 2011, pp. 223-234,

Additional Monitoring and Emissions Data Needed

There is very little monitoring data collected related to ammonia. Outside of routine CSN 24-hour ammonium (NH4) measurements and weekly NADP wet NH4 deposition, most of the ammonia-related measurements have been limited to special field studies. More recently starting in 2011 the AMoN ammonia network has been expanded to include approximately 50 sites across the U.S.⁸ AMoN measures two-week ammonia concentrations, so has limited temporal and spatial coverage. But is an improvement over past data availability. Additional ammonia and ammonia-related measurements are needed to more fully evaluate the emission inventories and air quality models. The diurnal variation in ammonia and ammonium, as well as NO3 and HNO3 in order to understand the reduced and reactive nitrogen cycle. Addition data on emissions factors and spatial and temporal variability in ammonia emissions is also needed.

⁸ http://nadp.isws.illinois.edu/AMoN/

Table 1. Summary of WestJumpAQMS NH_3 emissions modeling components review

Parameter WestJump Modeling Evaluation Activities Recommen	ndation
Emissions CMU model version Reviewed EPA technical Run the CM	AU model for
Model 3.6 outputs from EPA support document WRAP stat	es using updated
(NEI2008v1) emissions	factors and
activities fo	or modeling year;
investigate	e bi-directional
flux model	
Emissions Animal-specific Reviewed EPA technical Literature	review for
Factors County, state, or support document updated en	missions factors
national level factors and coordi	inate with state
from the CMU model agriculture	divisions for
version 3.6 (ca. 2002)	state specific
factors; us	e these factors as
Activity County lovel 2007 Deviewed EDA technical Coordinate	
(animal animal population support document agriculture	divisions to
population) from Census of Ag	dated animal
numbers h	w county: use
these as in	put to the CMU
model	
Spatial Total agricultural Qualitative evaluation of Collect stat	te water quality
Allocation surrogate from the emissions locations at division pe	rmitting data for
2002 NLCD maps large CAFOs in Colorado large CAFC	s and convert
county to grid cell; and Wyoming performed these data	into spatial
updates for CO for the 3-State Air Quality surrogates	; collect fertilizer
CAFOs based on Study; RoMANS showed application	n data from the
state-provided improved NH3 states and	convert these
permits performance following data into s	patial surrogates
update to CO CAFO	
locations	
Temporal EPA NEI state-specific Literature review by Implement	t meteorology-
Allocation monthly profiles ENVIRON for EPA and dependent	t hourly
based on inverse review of meteorology- variability	
Air Quality CAMy simulations at Comprehensive model Conduct de	atailad
Model 36-km 12-km and 4- performance evaluation evaluation	
km grid resolution against surface monitors prediction	s from air quality
focused on the of meteorology and models to	diagnose the
intermountain-West chemical observations cause and	improve poor
model per	formance