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Background vs Baseline ozone

Baseline ozone

- Ozone transported to a location (i.e. Mt Bachelor, OR) from all upwind sources
(i.e., natural and anthropogenic) before modification by recent, localized U.S.
emissions.

- includes aged ozone, produced many days earlier from U.S. emissions, that is
returned to the U.S. after circling the globe.

- can be directly observed by surface or airborne instrumentation along the west
coast or U.S. political borders; can also be observed above the inland regions of
the western U.S. in air masses not influenced by recent US emissions.

Global or hemispheric background ozone

- amodel construct that estimates the atmospheric concentration of a pollutant
due to natural or a combination of natural and anthropogenic sources.



Background vs Baseline ozone

US EPA definitions of background ozone

Prior to 2006, ozone measurements from remote monitoring sites were
used to estimate background.

In 2006, EPA used models to estimate Policy-Relevant Background (PRB)
ozone, which includes ozone from global anthropogenic and natural
sources in the absence of North American (i.e., U.S., Canada, and
Mexico) anthropogenic emissions.

EPA now refers to PRB as North American Background (NAB).

In 2013, EPA introduced U.S. background (USB) ozone by including
anthropogenic contributions from Canada and Mexico. The difference
between NAB and USB is small.



How has global tropospheric ozone changed since pre-industrial times?
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Pre-industrial to end 21st century projections of tropospheric ozone
from the Atmospheric Chemistry and Climate Model
Intercomparison Project (ACCMIP)
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Annual surface ozone trends: 1950s through 2000-2010 (from the peer-reviewed literature)
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42 years of ozone observations at Mauna Loa, Hawaii (NOAA GMD, Boulder)

Ozone trend at Mauna Loa Observatory, Hawaii, 3.4 km above sea level Nighttime O, trend at Mauna Loa Obs., Hawaii, 3.4 km above sea level
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Anthropogenic emissions upwind of the USA are changing rapidly

April-May 2009-2011 average SCIAMACHY tropospheric NO2
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Tropospheric NO, column data from the GOME and SCIAMACHY sensors were freely downloaded from: www.temis.nl

For methodology see:
Boersma, K. F,, et al. (2004), Error analysis for tropospheric NO2 retrieval from space, J. Geophys. Res., 109, D04311,
Richter, A., et al.(2005), Increase in tropospheric nitrogen dioxide over China observed from space, Nature, 437
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Evolution of anthropogenic and biomass burning
emissions of air pollutants at global and regional scales
during the 1980-2010 period
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Methane continues to increase

Mauna Loa, Hawalii, United States (MLO)
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Methane has increased by 12% since 1984



Impact of Asia on springtime ozone across the N. Pacific Ocean and North America
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Figure 1. Seasonal five-year average of O;A over the Pacific Basin and North America at the surface, 500 hPa (approx-
imately 5 km), and 300 hPa (approximately 10 km) taken from the 2001-2005 model results.
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Ozone transport from Asia is at a maximum during spring.

The “sphere of influence” of Asian ozone is strongest in the mid-
troposphere and reaches Hawaii and western North America.

Only continuous US free tropospheric baseline monitoring sites downwind of Asia:
Mauna Loa, Hawaii, and Mt Bachelor, Oregon



Annual surface ozone trends: 1990s through 2000-2010 (from the peer-reviewed literature)
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Ozone design values:
annual fourth-highest daily
maximum 8-hr ozone mixing
ratio, averaged over 3 years

Calculated by EPA
www.epa.gov/airtrends/values.html

During 2003-2013 ozone
decreased in the eastern US
by -1.3 £ 0.6 ppbv yr?
(trend range is 1 standard
deviation).
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During 2003-2013 ozone
decreased in the western
US by:

-1.0 £ 0.6 ppbv yr!
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O, is decreasing in the eastern US in spring and summer, in response to emissions reductions

Daytime ozone trend at Big Meadows, Shenandoah NP, 1073 m ahove sea level Daytime ozone trend at Big Meadows, Shenandoah NP, 1073 m ahove sea level
Data from years: 1989 - 2014 Data from months: 4 5 Data from years: 1988 - 2014 Data from months: 6 7 8

1988 1990 1992 1994 1996 1998 2000 2002 2004 2006 2008 2010 2012 2014 1988 1990 1992 1994 1996 1998 2000 2002 2004 2006 2008 2010 2012 2014
Year Year

increase ppbv/year p value
03 95th %: -0.58 +/-0.27 0.00

increase ppbv/year p value
03 95th %: -1.16 +/- 0.39 0.00

Green - mean Green - mean
Yellow - median Yellow - median
Blue - 5th & 95th percentiles 0, 67th %: -0.30 +/-0.12 0.00 Blue - 5th & 95th percentiles 0, 67th %: -0.74 +/-0.27 0.00

Red - 33rd and 67th percentiles 0, 50th %: -0.27+/-0.13  0.00 Red - 33rd and 67th percentiles 0, 50th %: -0.66 +/-0.25  0.00
0, 33th %: -0.19 +/-0.16 0.02 0, 33th %: -0.54 +/-0.23 0.00

('.)3 05th %: -0.04 +/-0.27 0.77 ('.)3 05th %: -0.28 +/- 0.25 0.03
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O, is decreasing in Sequoia NP in summer but not spring; emissions are coming down

Daytime ozone trend at Sequoia Lower Keawah, 1890 m above sea level Daytime ozone trend at Sequoia Lower Keawah, 1890 m above sea level
Data from years: 1989 - 2014 Data from months: 4 5 Data from years: 1989 - 2014 Data from months: 6 7 8

1988 1990 1992 1994 1996 1998 2000 2002 2004 2006 2008 2010 2012 2014 1988 1990 1992 1994 1996 1998 2000 2002 2004 2006 2008 2010 2012 2014
Year Year

increase ppbv/year p value
03 95th %: -0.18 +/- 0.46 0.43

increase ppbv/year p value

Yellow - median Yellow - median O, 95th %: -0.61 +/- 0.36 0.00
Blue - 5th & 95th percentiles 0, 67th %: 0.02+/-0.37  0.93 Blue - 5th & 95th percentiles 0,67th %: -045+-032  0.01

Red - 33rd and 67th percentiles O, 50th %: 0.03 +/- 0.33 0.84 Red - 33rd and 67th percentiles 0,50th %: -0.39+/-0.33  0.02
0, 33th %: 0.05 +/-0.28 0.70 0, 33th %: -0.29 +/-0.34 0.09

('.)3 05th %: 0.14 +/-0.23 0.23 ('.)3 05th %: 0.15+/-0.44 0.48

Green - mean Green - mean
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Despite emissions reduction, O; is increasing at Lassen NP in spring

Daytime ozone trend at Lassen Volcanic NP, 1756 m above sea level Daytime ozone trend at Lassen Volcanic NP, 1756 m above sea level
Data from years: 1989 - 2014 Data from months: 4 5 Data from years: 1989 - 2014 Data from months: 6 7 8

1988 1990 1992 1994 1996 1998 2000 2002 2004 2006 2008 2010 2012 2014 1988 1990 1992 1994 1996 1998 2000 2002 2004 2006 2008 2010 2012 2014
Year Year

increase ppbv/year p value
03 95th %: 0.21 +/- 0.22 0.06

increase ppbv/year p value

Yellow - median Yellow - median O, 95th %: -0.22 +/- 0.29 0.14
Blue - 5th & 95th percentiles 0,67th %: 0324-0.14  0.00 Blue - 5th & 95th percentiles 0, 67th %: 0.09 +/- 0.21 0.39

Red - 33rd and 67th percentiles O, 50th %: 031 +/-0.13 0.00 Red - 33rd and 67th percentiles O, 50th %: 0.14 +/-0.20 0.14
0, 33th %: 0.31 +/-0.12 0.00 0, 33th %: 0.18 +/-0.18 0.05

('.)3 05th %: 0.29 +/-0.19 0.00 ('.)3 05th %: 0.19 +/-0.19 0.05

Green - mean Green - mean
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Mt Bachelor samples the lower free troposphere at night (Dan Jaffe, U. of Washington)

Nighttime ozone trend at Mount Bachelor Observatory, 2763 m above sea level Nighttime ozone trend at Mount Bachelor Observatory, 2763 m above sea level
Data from years: 2004 - 2015 Data from months: 4 5 Data from years: 2004 - 2015 Data from months: 6 7 8

1988 1990 1992 1994 1996 1998 2000 2002 2004 2006 2008 2010 2012 2014 1988 1990 1992 1994 1996 1998 2000 2002 2004 2006 2008 2010 2012 2014
Year Year

increase ppbv/year p value
03 95th %: 0.81 +/-0.50 0.00

increase ppbv/year p value
03 95th %: 1.05 +/-0.90 0.03

Green - mean Green - mean
Yellow - median Yellow - median
Blue - 5th & 95th percentiles 0, 67th %: 0.74 +/-0.44 0.00 Blue - 5th & 95th percentiles 0, 67th %: 0.61 +/-0.64 0.06

Red - 33rd and 67th percentiles 0, 50th %: 0.63 +/-0.41 0.01 Red - 33rd and 67th percentiles O, 50th %:  0.60 +/- 0.75 0.10
0, 33th %: 0.64 +/- 0.37 0.00 0, 33th %: 0.37 +/- 0.72 0.27

('.)3 05th %: 0.75 +/-0.79 0.06 ('.)3 05th %: 0.55 +/- 0.59 0.07
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20 years of free tropospheric ozone observations are now
available above western North America during springtime

(0. Cooper, U. of Colorado/NOAA, Boulder)

All available data, 3000-8000 m
Green - mean

Yellow - median
Blue - 5th & 95th percentiles
Red - 33rd and 67th percentiles

1995-2014 trend
increase ppbv yr'  p value

03 95th %: 0.40 +/-0.48
03 67th %: 0.33 +/-0.22

03 50th %: 0.31 +/-0.21
03 33th %: 0.34 +/-0.19
03 05th %: 0.39 +/-0.30

4216 2739 4185 7989 2702 8769 5800 4797 2288 2259
2872 2826 3609 3092 2587 3056 2841 3534 3895 1919

1984 1986 1988 1990 1992 1994 1996 1998 2000 2002 2004 2006 2008 2010 2012 2014
Year




All available data, 3000-8000 m, between 31.5°-50.5° N

Green - mean

Yellow - median
Blue - 5th & 95th percentiles
Red - 33rd and 67th percentiles

1995-2014 trend
increase ppbv yr'1

0, 95th %:
0, 67th %:
0, 50th %:
0, 33th %:
0, 05th %:

3579 1671 2537 7529 2220 8574 5171 4622 2113 2109
2363 2060 2803 2578 2140 2881 2616 2047 2566 1719

1984 1986 1988 1990 1992 1994 1996 1998 2000 2002 2004 2006 2008 2010 2012 2014
Year

0.38 +/- 0.63
0.34 +/- 0.21
0.31 +/-0.19
0.35 +/-0.19
0.38 +/- 0.30

p value




All available data, 3000-8000 m, no aircraft field campaigns

Green - mean

Yellow - median
Blue - 5th & 95th percentiles
Red - 33rd and 67th percentiles

1995-2014 trend
increase ppbv yr'1

0, 95th %:
0, 67th %:

0, 50th %:
0, 33th %:
0, 05th %:

2973 2266 3095 2083 2702 4297 2977 4797 2288 2259
2368 2730 2276 1640 2555 3056 2721 3534 2562 1919

1984 1986 1988 1990 1992 1994 1996 1998 2000 2002 2004 2006 2008 2010 2012 2014
Year

0.67 +/- 0.38
0.40 +/-0.19
0.37 +/-0.19
0.34 +/-0.18
0.26 +/- 0.28

p value
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A global climatology of stratosphere—troposphere exchange using
the ERA-Interim data set from 1979 to 2011

B. Skerlak, M. Sprenger, and H. Wernli
ETH Zurich, IAC, Universitiitstrasse 16, 8092 Ziirich, Switzerland
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Fig. 17. Seasonally averaged deep STT ozone flux into the PBL for 1979201 1. For this calculation, the ozone concentration is kept constant
along the trajectories after crossing the tropopause. The orange contours indicate areas where the ozone flux across the tfepopause due to
deep STT is higher than 7kg km~2month~ .
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Stratospheric influence on surface ozone in the Los Angeles area
during late spring and early summer of 2010
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Observations from the TOPAZ airborne ozone lidar aboard
the NOAA Twin Otter on May 29.
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Shown is a north-south transect 10 km west of Joshua
Tree National Park. The solid black curve shows the May
29 ozonesonde profile.
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Springtime high surface ozone events over the western United States:
Quantifying the role of stratospheric intrusions
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Continental U.S. distributions of median
stratospheric contribution to MDAS surface
ozone from April-June 2010 as estimated by
the NOAA GFDL AM3 model.




IONS-2010 ozonesonde network Site Locations

Near daily ozonesondes were launched from 7 sites
between May 10 - June 19, 2010.

A total of 230 sondes were launched, the most in any
western North America field campaign.

Funding, operations and support provided by:

NOAA ESRL Health of the Atmosphere Program
NASA Tropospheric Chemistry Program

U. S. Navy

Environment Canada

NOAA National Weather Service

National Park Service

California State Parks

Naval Postgraduate School (Monterey)

Federal Aviation Administration




May-June 2010 median ozone values, ppbv
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Site Locations

May-June 2010 median ozone values, ppbv
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Challenges of a lowered U.S. ozone standard

Source attribution science can help areas of the U.S. west

By Owen R. Cooper,** Andrew O,
Langford,® David D. Parrish,'*
Diavid W. Fahey*

t Earth's surface, ozone is an air pol-
lutant that causes respiratory health
effects in humans and impairs plant
growth and productivity (7). The
Clean Air Act (CAA) of 1070 man-
dates that the US. Environmental
Protection Agency (E assess the ozone
standard every 5 years and revise when nec-
essary to protect human health.
POLICY With a decision expected in
October 2015 as to whether the
standard will be toughened, we discuss limi-
tations of ozone and precursor observations
that hinder the ability of state and local air
pollution-control agencies to accurately
attribute sources of ozone within their ju-
risdictions. Attaining a lower standard may
be particularly challenging in high eleva-
tionz of the western United States, which
are more likely to be affected by ozone that
has been transported long distances or that
originated in the stratosphere.

Understanding the origins of surface
ozone is complicated by its multitude of
sources. Ozone is transported to the surface
from the natural reservoir in the strato-
sphere or produced from precursor gases
[nitrogen oxides (NO,) and volatile organic
compounds] that react in the presence of
sunlight. Ozone precursors have natural
sources—such as vegetation, wildfires, and
lightning—and are also emitted by human
activity—such as combustion of fossil fuels
and human-caused biomass burning,

The current primary (health-based) EPA
standard is 75 parts per billion by volume
(ppbv), with 227 US. counties, home to 123
million people. classified as not having at-
tained the standard (www.epa gov/airquality/
greenbook/index.html). In November 2014,
EPA proposed a revised primary ozone stan-
dard in the range of 65 to 70 ppbv in order
to improve public health protection (2). The
mast recent orone “design values™ were used
to determine whether ozone ohservations
comply with the standard (which is based on

the 3-year average of the fou TH E CHALLENG E

maximum 8-hour ozone &
year) at all EPA-approved o
sites (see the chart). The hi

(10-12) and ozone observations above the

California coast (9) and rural Nevada (6)
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low-elevation rural and urban (<15 km)
sites in the western United States.
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=sary control obliga-
tions”™ (13). However, these mechanisms re-
quire states and EPA to be able to quantify
the overall contribution and sources of back-
ground ozone. The role of scientists is to in-
form the decision-making by econducting
research to accurately quantify background
orone. The challenges are model accuracy
and limited observations of baseline ozone,
which require further development and en-
hancement in order to improve the quanti-
fication of background czone. A comparison
of two global models shows that they dif-
fer in their estimates of monthly mean
background ozone by as much as 10 pphy
and produce different seasonal cycles (120
Global models also have deficiencies in re-
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seek more accurate and precise attnibution
of observed ozone to local, upwind, and
stratospheric sources of ozone to deter-
mine how much domestic emissions must
be reduced in order to attain that standard.
A lower ozone standard will also increase
the probability that the standard will be ax-
ceeded in springtime, which would require
the attribution of ozone episodes beyond
the typical summertime period of concern.
Accurate quantification of background
ozone under this new paradigm would re-
quire enhanced baseline ozone ohservations
at a spatial density and temporal frequency
adequate for evaluating and improving the
models. Onece the models can replicate base-
line opone, greater confidence can be placed
in their estimates of background and locally
produced ozone.

Additional observations include routine
vertical ozone profiles at multiple coastal
and inland sites using balloon-borne
ozonesondes, ground-based ozone lidars,
or, possibly, commercial aircraft Related
options include augmenting the ULS. Tropo-
spheric Ozone Lidar Metwork (TOLNet),
the U.5. National Oweanic and Atmospheric
Administration (NOAA) Global Greenhouse
Gas Reference Network aircraft program,
or the European In-Service Aircraft for a
Global Observing System (IAGOS). Mew

From both scientific and regulatory points of view,
a lower ozone standard will motivate air quality—
control planners to seek more accurate and
precise attribution of observed ozone to local,
upwind, and stratospheric sources of ozone to
determine how much domestic emissions must be
reduced in order to attain that standard....

.....Accurate quantification of background ozone
under this new paradigm would require enhanced
. baseline ozone observations at a spatial density
. and temporal frequency adequate for evaluating
 and improving the models.

=

Free tropospheric monitoring

Ozonesondes

- Lidar (TOLNet)

- Research and commercial
aircraft (IAGOS, NOAA
GMD)
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Tropospheric Ozone LIDAR Network

‘ | Science ‘ ‘ Contact Us

TOLNet - Tropospheric Ozone Lidar Network

Ground-Based Profiling of Tropospheric Ozone

One of TOLNet’s goals:

Advance our understanding of processes controlling regional background
atmospheric composition (including STE and long range transport) and their
effect on surface air quality to prepare for the GEO-CAPE era.



U.5. Department of Commerce [ National Oceanic & Atmospheric Administration / NOAA Research

@ Earth System Research Laboratory

Global Monitoring Division

NOAA Earth System Research Lab Aircraft Program
Greenhouse gases plus ozone up to 8 km
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IAGOS equipment is
designed for installation in
the avionics compartment
of Airbus A330 aircratft.

Flights

Species that can be

measured include: Flight tracks and flight frequency
during 2009 of all A330 aircraft
based in the United States. Figure

produced by S. D. Jacob, FAA.

ozone
carbon dioxide

methane

particulate matter

carbon monoxide
nitrogen oxides

total reactive nitrogen
water vapor

cloud droplet backscatter




An example of IAGOS CO profiles above Taipei, Taiwan
Figure by Kuo-Ying Wang, National Central University, Taiwan

PGGM IAGOS PACKAGE PACIFIC CO MEASUREMENTS
LAT 25.09 to 25.09 LON 121.24 to 121.24
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California GDP in 2012: 1,959 billion USD
Taiwan GDP in 2012: 465 billion USD



Scientific Aviation f_ﬁ" TiFiC

Dr. Stephen Conley
CO2, CH4, and ozone among other trace gases up to 8 km

Contact Scientific Aviation

Email: sconley@scientificaviation.com
Main: (916) 217-1107

1608 Old Hart Ranch Road
Roseville, CA 95661
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Baseline Ozone Network Design

Surface monitoring:

Take advantage of existing Trinidad Trinidad Head '0- :
Head MBL and Chews Ridge mountain 115:
top ozone monitors.

Point Reyes/
Add MBL ozone monitors to Pt Reyes Bodega Bay
and Vandenburg AFB.

‘;.

Chews Ridge

Add a mountain top site west of h
Redding. Vandenburg AFBS

Daily Vertical Profiles:
Highest priority is an ozone lidar at Pt
Reyes or Bodega Bay.

Lidars at Trinidad Head and Vandenburg
AFB are also needed. 500 1000 1500 2000 2500 3000 3500

Elevation, m (7 km resolution) .

Launch ozonesondes on cloudy days
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