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Air Quality Management Requires
Source Apportionment

Clean Air Act Provisions
Your State +110 State Implementation Plans
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EPRI ENV-VISION Conference We need to be able to describe the sources that contribute to
Air Quality-Background Ozone Il each exceedance day.

Washington, D.C.
“slightly adapted from T. Keating, U.S. EPA

Constraints on springtime background O, from

mid-tropospheric satellite (OMI, TES) products (2006) Background drives much of day-to-day variability in total

surface ozone over high-altitude WUS in both models
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background; models sampled at CASTNet sites for June 1 - Aug 31 2006

- Two different models bracket ozone “background” observed from space

Fiore et al, Atm. Env. 2014; NASAAQAST Tiger Team] Eigre et al Atm Eny. 201.
Spatial variability in estimates of 4t highest MDA8 North Year-to-year variability in background from
American background ozone in 2 models (Mar 1to Aug 31, 2006) N. American lightning NO,
AM3 (~2° x2° ) GEOS-Chem (%2° x%° ) Fractional ‘contribution’ from lightning NO, on the top 10% of simulated

total MDAS8 surface ozone on summer days
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- Background higher at altitude in WUS 0 005 0.1 015 0.2 0.25 0.3 0.35 anomaly from
. ) i o . . Fractional ‘Contribution’ 2004-2012
- Differences/uncertainty associated with influences from lightning NO,,
fires, stratosphere, isoprene chemistry (more than horizontal resolution) Determined by GEOS-Chem simulations: (Base - Zero_LNO,)/Base
Fiore et al, Atm. Eny, 2014} J. Guo; Murray, Curr Pollution Rep, 2016




GEOS-Chem model attributes July 2008
ozone anomaly over Reno, NV to fires

6

/u\ GEOS-Chem Model

3 . /N .
July MDAS8 ozone . ,

anomaly (ppb) 0 *-v N/

(difference from

mean of all Julys) -3
-6

r2=0.8
9

2004 2005 2006 2007 2008 2009 2010 2011 2012

July MDA8 ozone ¢
anomaly in fire
‘contribution’ 4

(ppb) 2
Determined as
(Base — Zero_Fires) 0 N | I [ ] L L] ] [ ] ']

in GEOS-Chem .o -

J. Guo

Stratosphere-to-troposphere (STT) O, transport influence on
WUS high-0; events
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-> Identified 13 events in April-June 2010 that affected (high-altitude)
surface sites over the WUS M. Lin et al., JGR. 2012}

How might ozone (and background) change in the future?

Decadal average monthly mean ozone (ppb)
over the Intermountain West
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- GFDL CM3 chemistry-climate model roughly captures decadal
mean seasonal cycle over the Intermountain West Q Clifton)
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An Air Quality Management Challenge: NATURAL EVENTS
How to detect and attribute accurately?

Modeled range of contributions to individual events
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: Examples of how R
satellite, in situ
measurements

and models can be

combined to
detect and attribute

exceptional events

Fiore et al., EM 2014
(NASA AQAST special issue)

Climate variability can modulate WUS background ozone:
Frequency of deep stratospheric intrusions over WUS tied to known mode
of climate variability (La Nifia)
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More frequent stratospheric
intrusions the following spring
over WUS?
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- May offer a few months lead time to plan for an active stratospheric
intrusion season (protect public health, identify exceptional events)

M. Lin et al., Nature Communications, 2015

Chemistry-climate model projects 21st Century WUS ozone
increase in cooler months despite U.S. NO, decreases

Transient RCP8.5 simulations (climate + emissions change) with GFDL CM3
chemistry-climate model over the high-altitude WUS (36-46N, 105-115W)
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Chemistry-climate model projects increases from rising
global methane: shift in balance of regional-v-global sources

Transient RCP8.5 simulations (climate + emissions change) with GFDL CM3
chemistry-climate model over the high-altitude WUS (36-46N, 105-115W)
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= More-than-doubling of global methane offsets NO,-driven decreases

Clifton et al., GRL, 2014

Rising methane may impose a ‘penalty’ on attaining current
and more stringent, future ozone NAAQS

Average number of days > 70 ppb under RCP8.5 scenario
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An AQM Challenge: INTERCONTINENTAL TRANSPORT
How much pollution from afar?

Points>70 [ppbv]: 2087 in total, 1024 within the red trapezoid
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-> Asian emissions contribute < 20% of total Os; U.S. influence dominates
- Highest Asian enhancements for total ozone in the 70-90 ppbv range
Linetal JGR 20122l

Some challenges for O; air quality management

stratosphere Warming climate

lightning +in polluted regions
[acob & Winner, 2009 review]
+ natural sources

. ” . . [reviews: Isaksen et al., 2009;
Rising (?) Asian emissions Fiore ef ., 2012, 2015]

[e.g., Jacob et al., 1999; ? Transport pathways

Richter et al., 2005;
Cor st 20101 fintercontinental | “Background Ozone”
Wildfire, biogenic

~ | transport - I
L B el

; E
Asia USA (or North America)

Natural events e.g.,
stratospheric [Langford et al [2009];

fires [Jaffe & Wigder, 2012
methane

- Need process-level understanding of each ‘flavor’ of background on
daily to multi-decadal time scales

- Multi-model approach in context of observational constraints can
provide uncertainty / error estimates

-> Background poses largest challenge at high-altitude WUS sites

» Extras follow

2004-2012 GEOS-Chem simulations indicate lightning
NO, influence strongest in 2011 (July, over Utah)

MDA8 03 Anomalies of GEOS-Chem NA Lightning NOx in July, 2012
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Determined by GEOS-Chem simulations: (Base - Zero_LNO,)

J. Guo, L. Murraz




Horizontal resolution not a major source
of difference in model NAB estimates
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- Much larger differences between AM3 and
GC distributions (both total and NAB O,)
than b the 2GCr |
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