Southern New Mexico Ozone Modeling Study Summary of Results: Tasks 1-3

University of North Carolina (UNC-IE) Ramboll-Environ (RE)

November 30, 2015

SNMOS Background and Objectives

- The southern Doña Ana County region has the highest ozone levels of any area in New Mexico
 - The southern Doña Ana County area is within 95% of the federal standard for ozone
 - The New Mexico Air Quality Control Act requires the New Mexico Environment Department to develop a plan for reducing ozone levels in areas that are within 95% of the ozone standard
- The first step towards developing the plan is to understand the causes of high ozone in Doña Ana County
- SNMOS objectives:
 - Study the factors contributing to high ozone in Doña Ana County
 - Investigate future emissions scenarios that will produce attainment of the ozone standard

Overview of Approach

- SNMOS builds off of the Western Air Quality Study (WAQS)
 - WAQS 2011 modeling platform: WRF/SMOKE/CAMx
 - Adjustments to the meteorology and modeling domains to optimize for southern New Mexico
- Modeling 2011 New Mexico ozone season: May 1 September 30
- Modeling Plan
 - Prepare base year emission inventories
 - Run WRF/SMOKE/CAMx for 2011 base year
 - Evaluate 2011 base year model against observations, refine model if needed
 - Prepare future year emission inventories, year TBD
 - Run SMOKE/CAMx for future year
 - Modeled Attainment Test
 - Emissions sensitivity/control runs
 - Source apportionment to diagnose causes of high ozone in Doña Ana County
 - Reporting

SNMOS Tasks

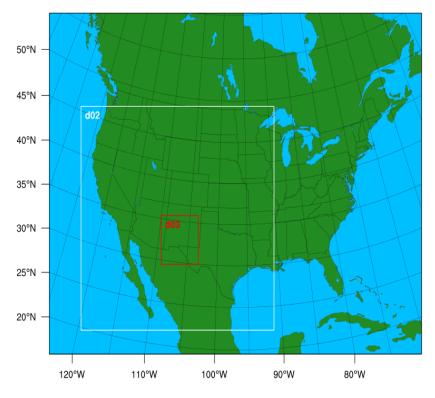
- <u>Task 1</u>: 2011 WRF 36/12/4 km with 4 km focus on Dona Ana/El Paso/Juarez and Work Plan
- Task 2: 2011 update Permian Basin O&G
- <u>Task 3</u>: 2011 update of Juarez and nearby Mexico EI, 2020 Mexico emissions update
- Task 4: SMOKE current 2011 NEI for 4 km domain
- <u>Task 5</u>: Gridded 2011 biogenic, fires, wind-blown dust, lightning emissions for 4 km domain
- **Task 6**: Develop 2011 4 km CAMx database and perform base case
- **Task 7**: 2011 MPE and sensitivity modeling for Dona Ana County
- **Task 8**: SMOKE current FY US EI and FY Mexico emissions update
- <u>Task 9</u>: FY 4 km CAMx simulation
- Task 10: FY ozone projections (MATS)
- <u>Task 11</u>: FY emissions sensitivity/controls
- <u>Task 12</u>: FY 4 km source apportionment run
- Task 13: Air Quality Technical Support Document (AQTSD)

Outline of Today's Presentation Task 1-3 Deliverables

- Modeling work plan and PowerPoint presentation of Weather Research Forecast (WRF) Meteorological Modeling Application/Evaluation Report
- 2. PowerPoint presentation on Permian Basin oil and gas 2011 and future year emission update (Technical memorandum provides additional detail)
- PowerPoint presentation on Mexico emissions to be used in 2011 base and future year modeling

Task 1: Weather Research Forecast (WRF) Meteorology Modeling **SNMOS 2011 WRF Sensitivity Results and Recommendations**

Lead: University of North Carolina



Task 1 Objectives and Deliverables

- Objective
 - Simulate and evaluate WRF meteorology for modeling 2011 summer season ozone in Doña Ana County, New Mexico
- Deliverables
 - Prepare a work plan for the WRF modeling and other aspects of study. (Completed 10/28/2015)
 - Power Point Presentation of WRF Results/Recommendations (Completed 11/30/2015)
- Tasks
 - Coordinate with WRF modelers in New Mexico to find the best model configuration for simulating ozone in Doña Ana County. (Completed 11/30/2015)
 - Use the current version of WRF to simulate summer ozone season (mid-April- August) meteorology for the year 2011 (Completed 11/1/2015)
 - Modeling domains: 36-km CONUS, 12-km Western U.S., and 4-km Doña Ana/El Paso/Juarez (Completed 10/28/2015)
 - Convert WRF output to CAMx inputs using WRFCAMx for 12-km New Mexico/West Texas/Northern Mexico and the 4-km Doña Ana/El Paso/Juarez domains (Completed 11/30/2015)
 - Prepare documentation and model performance information for Task 13. (Completed 11/30/2015)

WRF Modeling Domains

SNMOS 36/12/4km WRF Domains

WRF Sensitivities

WRFv3.7.1 (latest WRF release)

- WRF_NAM_Kfmods NAM ICBCs and the modified Kain-Fritsch cumulus scheme.
- **2.** WRF_NAM_MSKF Same as Configuration 1 with the multiscale (grid-aware) Kain-Fritsch (MSKF) cumulus scheme.
- **3.** WRF_ERA_MSKF Same as Configuration 2 but using the ECMWF ERA-Interim Reanalysis as the ICBC fields.
- **4.** WRF_ERA_MSKF_AN Same as Configuration 3 but based on prior experiences from the San Juan Hg study. Analysis nudging was not applied in domain 2 in the San Juan Hg study. This configuration will turn off analysis nudging for domain 2.

WRF Model Evaluation

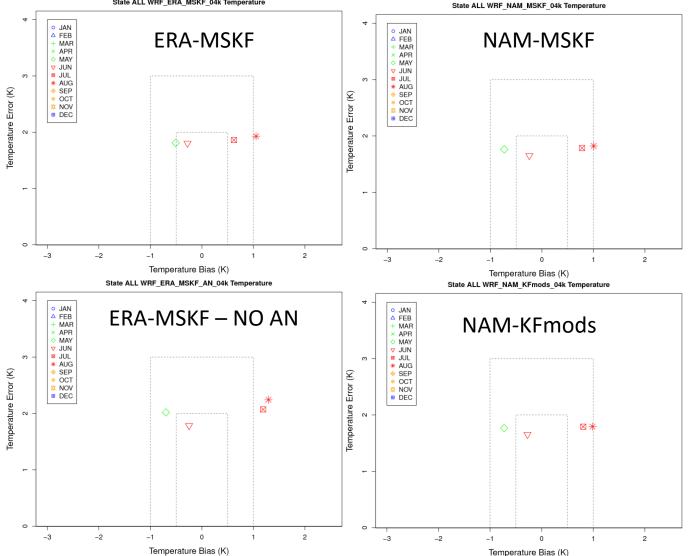
- Evaluation focused on 4-km domain statistics (other domains available)
 - May-August 2011 Average statistics of bias and error for temperature, mixing ratio, wind speed and direction. (Simplified into a table)
- Evaluation during periods with high ozone and active monsoon (Table stats., precipitation, and windrose)
 - 06/02/2011 thru 06/06/2011
 - 06/20/2011 thru 06/24/2011
 - 07/25/2011 thru 07/29/2011
 - 08/02/2011 thru 08/05/2011
 - 08/19/2011 thru 08/22/2011

12-km Domain Average Statistics May-Aug 2011 Period Average

	Temperature (deg K)		Mixing Ratio (g/kg)		Wind Speed (m/s)		Wind Direction (degrees)	
	Bias	Error	Bias	Error	Bias	RMSE	Bias	Error
Benchmark: Simple	≤ ±0.5	≤ 2.0	≤ ±0.5	≤ 1.0	≤ ±0.5	≤ 2.0	≤ ±5	≤ 40
Benchmark: Complex	≤ ±1.0	≤ 3.0	≤ ±1.0	≤ 2.0	≤ ±1.0	≤ 3.0	≤ ±10	≤ 80
NAM KFmods	0.07	1.85	-0.44	1.35	-0.53	1.64	2.15	29.6
NAM MSKF	0.11	1.84	-0.40	1.36	-0.53	1.63	2.14	29.6
ERA MSKF	-0.06	1.82	0.18	1.32	-0.61	1.67	3.19	30.6
ERA MSKF no AN	0.39	2.08	-0.13	1.42	-0.01	1.96	4.44	38.2

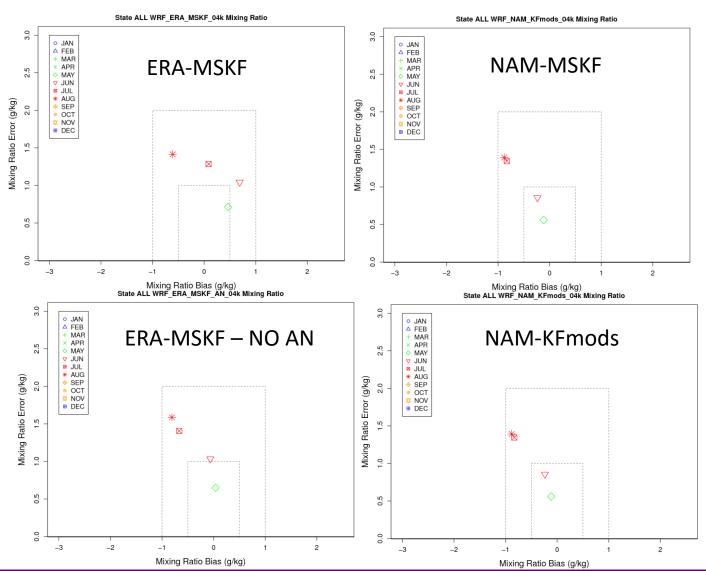
4-km Domain Average Statistics May-Aug 2011 Period Average

	Temper (deg		Mixing Ratio (g/kg)		Wind Speed (m/s)		Wind Direction (degrees)	
	Bias	Error	Bias	Error	Bias	RMSE	Bias	Error
Benchmark: Simple	≤ ±0.5	≤ 2.0	≤ ±0.5	≤ 1.0	≤ ±0.5	≤ 2.0	≤ ±5	≤ 40
Benchmark: Complex	≤ ±1.0	≤ 3.0	≤ ±1.0	≤ 2.0	≤ ±1.0	≤ 3.0	≤ ±10	≤ 80
NAM KFmods	0.21	1.77	-0.53	1.05	-0.30	2.12	5.46	43.6
NAM MSKF	0.22	1.77	-0.46	1.03	-0.34	2.12	5.02	43.9
ERA MSKF	0.24	1.87	0.14	1.12	-0.43	2.08	3.95	42.8
ERA MSKF no AN	0.40	2.05	-0.39	1.18	-0.34	2.28	4.73	49.1


NAM - warm bias / dry MR bias / underestimates wind speed

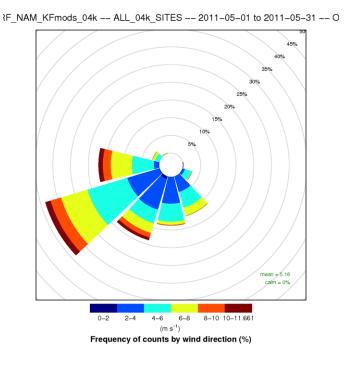
ERA – warm bias / wet MR bias / underestimates wind speed

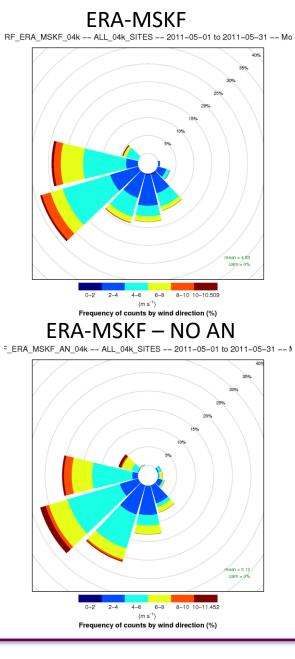
MSKF – warm bias / sensitive to ICBC / underestimates wind speed; precipitation


Temperature

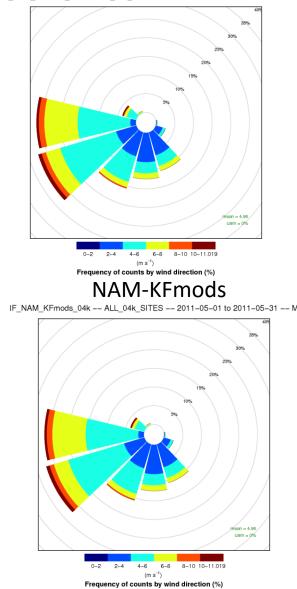
State ALL WRF_ERA_MSKF_04k Temperature

Overall warm bias but cool bias in late spring that is consistent between runs

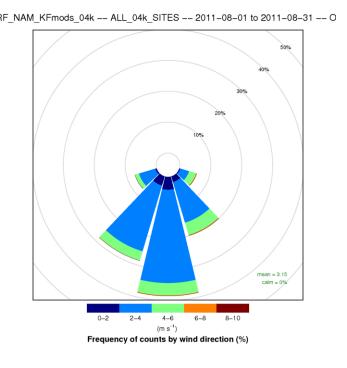

Mixing Ratio



Overall errors are consistent with error growing from late spring to summer

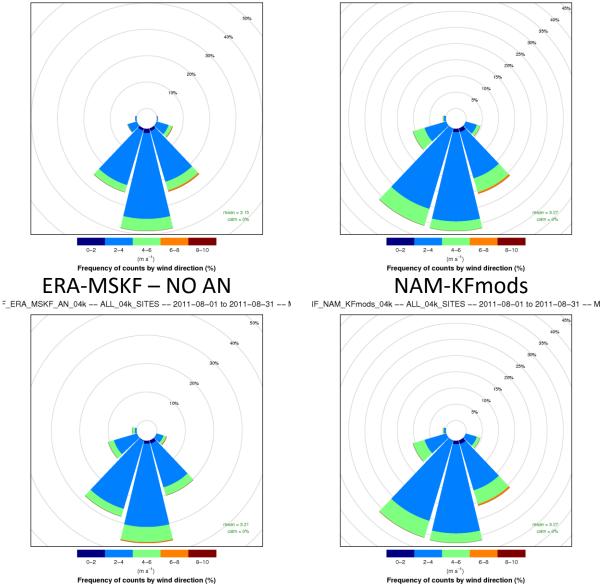

May 2011 All Sites within 4-km

OBS



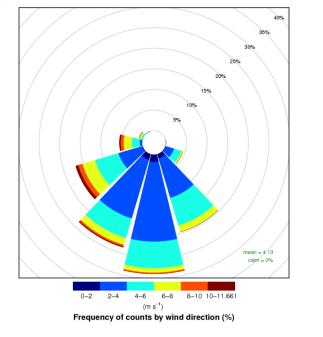
NAM-MSKF NF_NAM_KFmods_04k -- ALL_04k_SITES -- 2011-05-01 to 2011-05-31 -- M

August 2011 All Sites within 4-km


OBS

ERA-MSKF RF_ERA_MSKF_04k -- ALL_04k_SITES -- 2011-08-01 to 2011-08-31 -- Mo

NAM-MSKF


₹F_NAM_KFmods_04k -- ALL_04k_SITES -- 2011-08-01 to 2011-08-31 -- M

May - August 2011 All Sites within 4-km

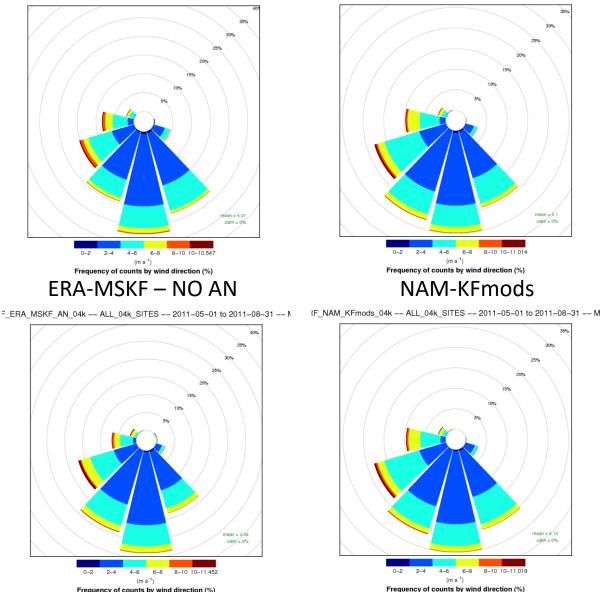
OBS

RF ERA MSKF 04k -- ALL 04k SITES -- 2011-05-01 to 2011-08-31 -- Ob

ERA-MSKF RF_ERA_MSKF_04k -- ALL_04k_SITES -- 2011-05-01 to 2011-08-31 -- Mo

6-8

4-6


(m s⁻¹)

Frequency of counts by wind direction (%)

8-10 10-10.547

NAM-MSKF

RF_NAM_MSKF_04k -- ALL_04k_SITES -- 2011-05-01 to 2011-08-31 -- Mc

Southern New Mexico Ozone Modeling Study

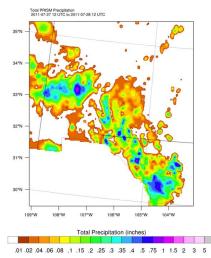
8-10 10-11.452

4-6 6-8

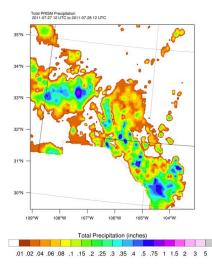
(m s⁻¹)

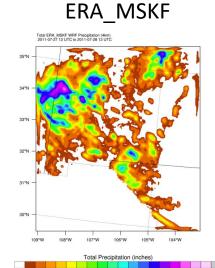
Frequency of counts by wind direction (%)

2-4

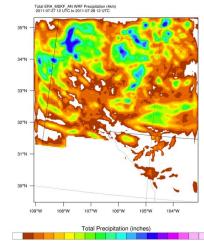

Las Cruces, NM (KLRU) 4-km Statistics 07/25/2011 thru 07/29/2011

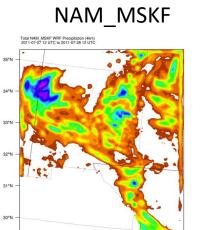
	Temperature (deg K)		Mixing Ratio (g/kg)		Wind Speed (m/s)		Wind Direction (degrees)	
	Bias	Error	Bias	Error	Bias	Error	Bias	Error
Benchmark: Simple	≤ ±0.5	≤ 2.0	≤ ±0.5	≤ 1.0	≤ ±0.5	≤ 2.0	≤ ±5	≤ 40
Benchmark: Complex	≤ ±1.0	≤ 3.0	≤ ±1.0	≤ 2.0	≤ ±1.0	≤ 3.0	≤ ±10	≤ 80
NAM KFmods	1.50	1.96	-0.53	1.36	0.41	1.52	-3.40	15.6
NAM MSKF	1.80	2.03	-0.53	1.40	0.59	1.58	-1.80	15.6
ERA MSKF	2.30	2.51	-0.47	1.23	0.13	1.56	-1.10	15.6
ERA MSKF no AN	3.30	3.37	-1.30	1.63	0.30	1.47	-1.30	18.1


Precipitation


July 28th Ozone Episode

PRISM - OBS

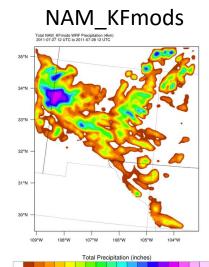

PRISM - OBS



.01 .02 .04 .06 .08 .1 .15 .2 .25 .3 .35 .4 .5 .75 1 1.5 2 3 5

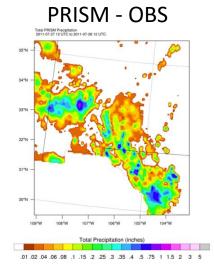
ERA_MSKF – No AN

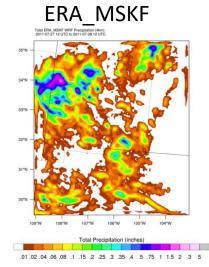
106°W

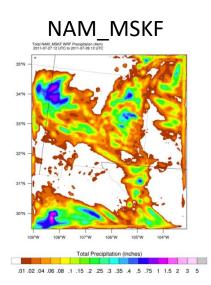

Total Precipitation (inches)

.01 .02 .04 .06 .08 .1 .15 .2 .25 .3 .35 .4 .5 .75 1 1.5 2 3 5

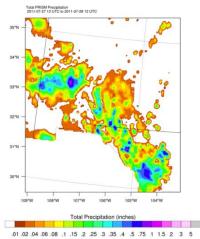
105°W 104°V

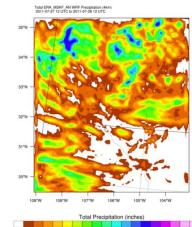

107°W


108°W



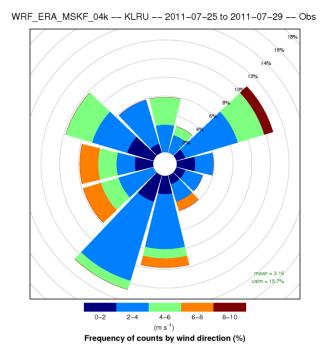
Precipitation

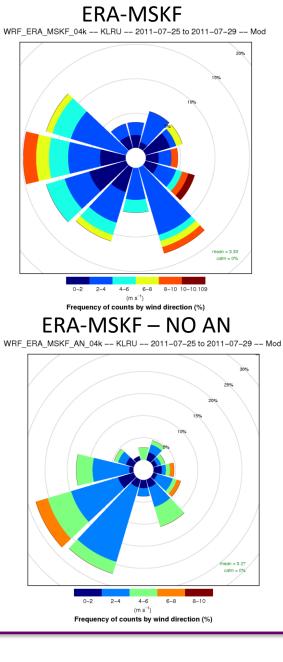

July 28th – No WRF Mask



PRISM - OBS

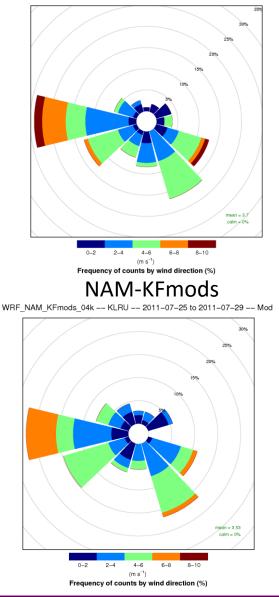
ERA_MSKF – No AN


.01.02.04.06.08.1.15.2.25.3.35.4.5.75 1 1.5 2 3 5


<text>

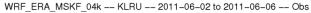
Total Precipitation (inches)

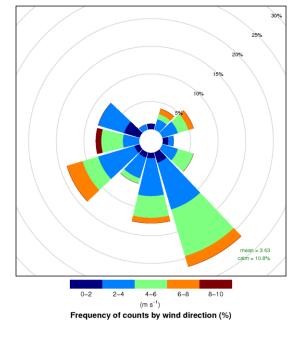
07/25/2011-07/29/2011 KLRU 4-km

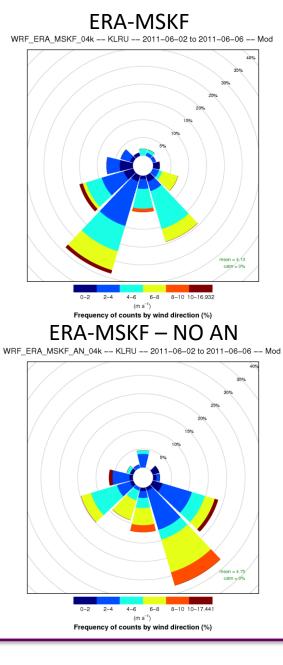

OBS

NAM-MSKF

WRF_NAM_MSKF_04k -- KLRU -- 2011-07-25 to 2011-07-29 -- Mod

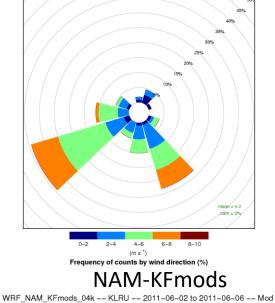


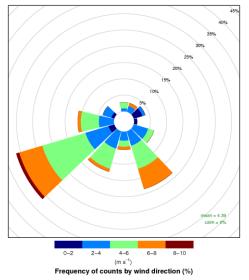

Las Cruces, NM (KLRU) 4-km Statistics 06/02/2011 thru 06/06/2011


	Tempe (deg		Mixing Ratio (g/kg)		Wind Speed (m/s)		Wind Direction (degrees)	
	Bias	Error	Bias	Error	Bias	Error	Bias	Error
Benchmark: Simple	≤ ±0.5	≤ 2.0	≤ ±0.5	≤ 1.0	≤ ±0.5	≤ 2.0	≤ ±5	≤ 40
Benchmark: Complex	≤ ±1.0	≤ 3.0	≤ ±1.0	≤ 2.0	≤ ±1.0	≤ 3.0	≤ ±10	≤ 80
NAM KFmods	0.59	1.40	-1.60	1.77	0.86	1.55	6.00	16.5
NAM MSKF	0.59	1.42	-1.60	1.78	0.60	1.67	7.40	17.4
ERA MSKF	1.30	1.96	-0.16	1.06	0.55	1.52	4.20	17.4
ERA MSKF no AN	0.23	1.80	-0.93	1.32	1.40	2.12	-0.79	18.0

06/02/2011-06/06/2011 KLRU 4-km

OBS





NAM-MSKF

WRF_NAM_MSKF_04k -- KLRU -- 2011-06-02 to 2011-06-06 -- Mod

Las Cruces, NM (KLRU) 4-km Statistics 06/20/2011 thru 06/24/2011

	Temperature (deg K)		Mixing Ratio (g/kg)		Wind Speed (m/s)		Wind Direction (degrees)	
	Bias	Error	Bias	Error	Bias	Error	Bias	Error
Benchmark: Simple	≤ ±0.5	≤ 2.0	≤ ±0.5	≤ 1.0	≤ ±0.5	≤ 2.0	≤ ±5	≤ 40
Benchmark: Complex	≤ ±1.0	≤ 3.0	≤ ±1.0	≤ 2.0	≤ ±1.0	≤ 3.0	≤ ±10	≤ 80
NAM KFmods	-0.31	1.28	-0.41	0.52	0.55	1.50	3.40	11.6
NAM MSKF	-0.30	1.28	-0.39	0.51	0.56	1.50	3.30	11.5
ERA MSKF	0.03	1.37	0.38	0.52	0.27	1.20	0.78	12.4
ERA MSKF no AN	-0.33	1.22	-0.01	0.63	-0.07	1.28	-0.93	12.9

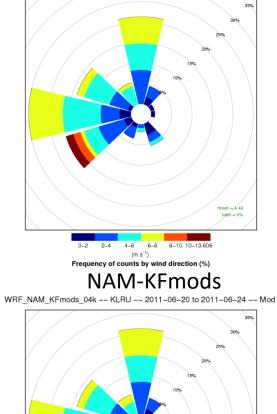
06/20/2011-06/24/2011 KLRU 4-km

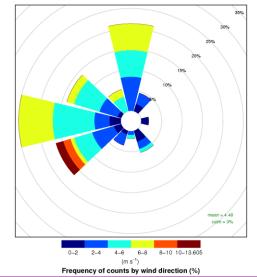
OBS WRF ERA MSKF 04k -- KLRU -- 2011-06-20 to 2011-06-24 -- Obs 35% mean = 3.81 calm = 3.9% 8-10 10-11.833 6-8 (m s⁻¹) Frequency of counts by wind direction (%)

an = 4.15 calm, = 0% 6-8 8-10 10-12.994 (m s⁻¹) Frequency of counts by wind direction (%) **ERA-MSKF – NO AN** WRF_ERA_MSKF_AN_04k -- KLRU -- 2011-06-20 to 2011-06-24 -- Mod

mean = 3.79

calm = 0%


8-10 10-13.252


ERA-MSKF

WRF ERA MSKF 04k -- KLRU -- 2011-06-20 to 2011-06-24 -- Mod

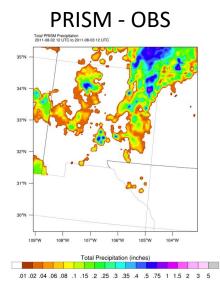
NAM-MSKF

WRF NAM MSKF 04k -- KLRU -- 2011-06-20 to 2011-06-24 -- Mod

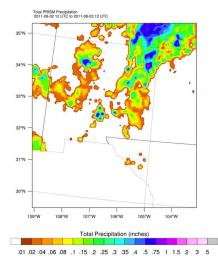
Southern New Mexico Ozone Modeling Study

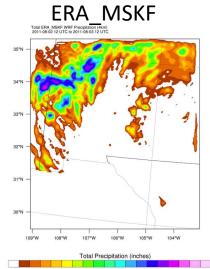
4-6 6-8

(m s⁻¹)

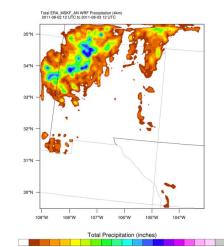

Frequency of counts by wind direction (%)

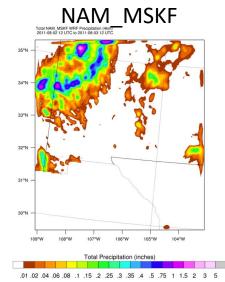
Las Cruces, NM (KLRU) 4-km Statistics 08/02/2011 thru 08/05/2011


	Tempe (deg		Mixing Ratio (g/kg)		Wind Speed (m/s)		Wind Direction (degrees)	
	Bias	Error	Bias	Error	Bias	Error	Bias	Error
Benchmark: Simple	≤ ±0.5	≤ 2.0	≤ ±0.5	≤ 1.0	≤ ±0.5	≤ 2.0	≤ ±5	≤ 40
Benchmark: Complex	≤ ±1.0	≤ 3.0	≤ ±1.0	≤ 2.0	≤ ±1.0	≤ 3.0	≤ ±10	≤ 80
NAM KFmods	1.80	1.92	-0.74	1.07	0.00	1.58	-2.90	19.8
NAM MSKF	1.60	1.79	-0.70	0.99	-0.39	1.63	-5.60	19.6
ERA MSKF	1.80	1.94	-0.87	1.16	-0.18	1.36	1.90	18.7
ERA MSKF no AN	1.90	1.96	-1.00	1.21	-0.38	1.27	-6.20	23.0


Precipitation

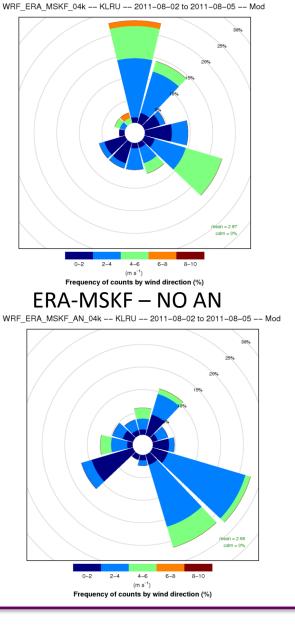
August 3rd Ozone Episode


PRISM - OBS

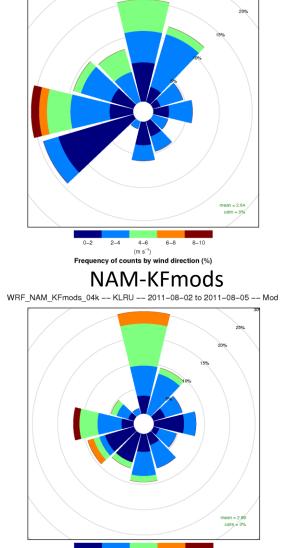


.01 .02 .04 .06 .08 .1 .15 .2 .25 .3 .35 .4 .5 .75 1 1.5 2 3 5

ERA_MSKF - No AN


.01 .02 .04 .06 .08 .1 .15 .2 .25 .3 .35 .4 .5 .75 1 1.5 2 3 5

08/02/2011-08/05/2011 KLRU 4-km


OBS WRF ERA MSKF 04k -- KLRU -- 2011-08-02 to 2011-08-05 -- Obs mean = 3.09 calm = 18.3% 6–8 8-10 4 - 6(m s⁻¹) Frequency of counts by wind direction (%)

ERA-MSKF

NAM-MSKF

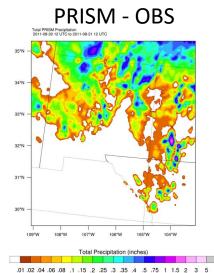
WRF_NAM_MSKF_04k -- KLRU -- 2011-08-02 to 2011-08-05 -- Mod

4-6

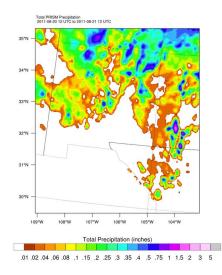
(m s⁻¹)

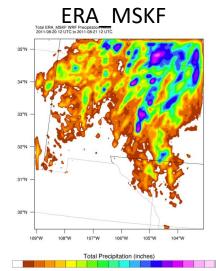
Frequency of counts by wind direction (%)

8-10

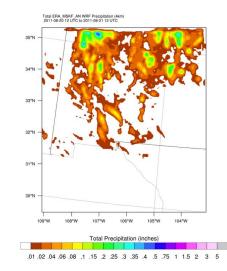

6-8

Las Cruces, NM (KLRU) 4-km Statistics 08/19/2011 thru 08/22/2011


	Tempe (deg		Mixing Ratio (g/kg)		Wind Speed (m/s)		Wind Direction (degrees)	
	Bias	Error	Bias	Error	Bias	Error	Bias	Error
Benchmark: Simple	≤ ±0.5	≤ 2.0	≤ ±0.5	≤ 1.0	≤ ±0.5	≤ 2.0	≤ ±5	≤ 40
Benchmark: Complex	≤ ±1.0	≤ 3.0	≤ ±1.0	≤ 2.0	≤ ±1.0	≤ 3.0	≤ ±10	≤ 80
NAM KFmods	1.20	1.88	-0.19	1.02	1.10	1.90	-3.10	9.15
NAM MSKF	1.10	1.99	-0.10	1.11	1.30	1.85	-1.10	8.37
ERA MSKF	2.20	2.38	-0.72	1.35	0.54	1.21	1.30	10.7
ERA MSKF no AN	3.60	4.04	-1.70	1.94	-0.03	1.14	0.79	13.8

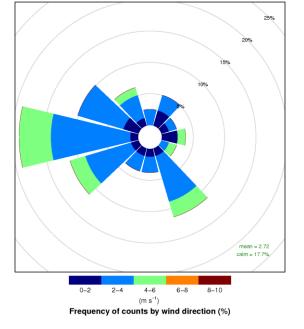

Precipitation

August 21st Ozone Episode


PRISM - OBS

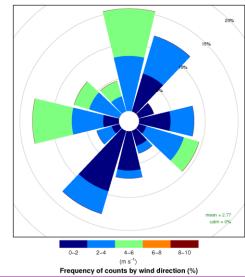

.01 .02 .04 .06 .08 .1 .15 .2 .25 .3 .35 .4 .5 .75 1 1.5 2 3 5

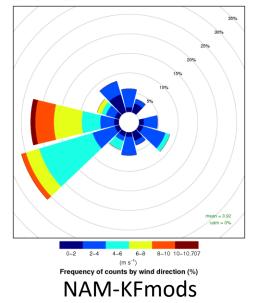
ERA_MSKF - No AN



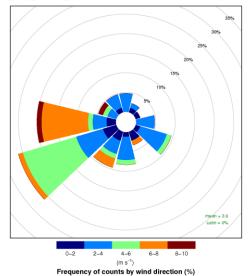
.01 .02 .04 .06 .08 .1 .15 .2 .25 .3 .35 .4 .5 .75 1 1.5 2 3 5

08/19/2011-08/22/2011 KLRU 4-km


OBS WRF_ERA_MSKF_04k --- KLRU --- 2011-08-19 to 2011-08-22 --- Obs


ERA-MSKF

WRF_ERA_MSKF_AN_04k -- KLRU -- 2011-08-19 to 2011-08-22 -- Mod



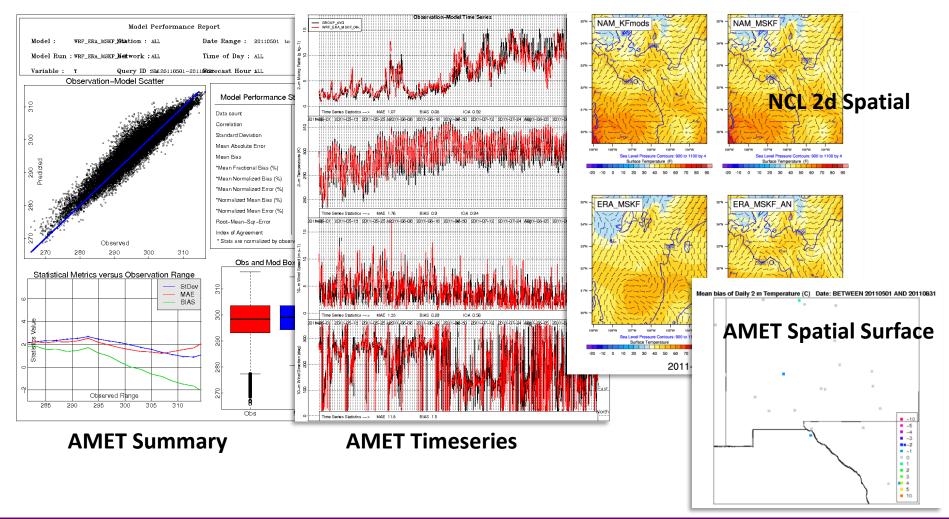
NAM-MSKF

WRF_NAM_MSKF_04k -- KLRU -- 2011-08-19 to 2011-08-22 -- Mod

WRF_NAM_KFmods_04k --- KLRU --- 2011-08-19 to 2011-08-22 --- Mod

Task 1: WRF MPE Summary

- Analysis nudging is needed in the 12km domain
- ERA vs NAM
 - ERA is generally wetter than NAM, better mixing ratio performance but positively biased overall
 - NAM performs better with temperature
 - ERA performs better with winds
- MSKF vs KF-mods
 - KF-mods is drier overall
 - MSKF has lower bias and error in mixing ratio


Task 1: SNMOS WRF Recommendations

- All WRF simulations able to simulate the predominant wind direction
- NAM-KFmods is too dry
 - select MSKF to improve dry bias
- ERA is wetter than NAM
- Recommend NAM MSKF because better to have a dry bias and improve temperature
 - Better to have a dry bias to allow more solar insolation for ozone production

Additional SNMOS WRF MPE Plots

- <u>http://ie.unc.edu/cempd/projects/data_viewer?proj</u>
 <u>ect=SNMOS</u>
- Results > View the results from a single simulation
- MET > WRF
- Plot Types
 - AMET: Soccer, Spatial Surface, Summary, Timeseries, Windrose
 - NCL: Temperature-Pressure-Winds 2-d Spatial
 - PRISM: Precipitation 2-d Spatial

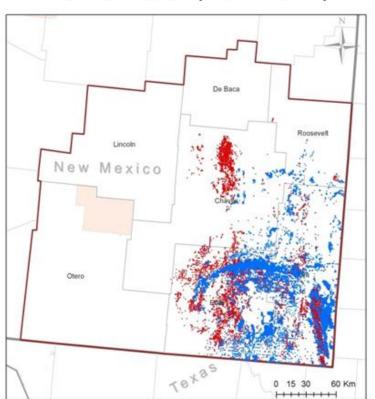
Additional SNMOS WRF MPE Plots

Task 2: Permian Basin Oil & Gas Inventory

Lead: Ramboll Environ

Task 2 Objectives and Deliverables

- Objective
 - Review available Permian Basin oil and gas inventories and recommend
 2011 and future year inventories for the SNMOS
- Deliverables
 - Power Point Presentation on Permian Basin oil and gas 2011 and future year emission update (Completed 11/30/2015)
 - Memo on available Permian Basin oil and gas 2011 and future year emissions data (Completed 11/10/2015)

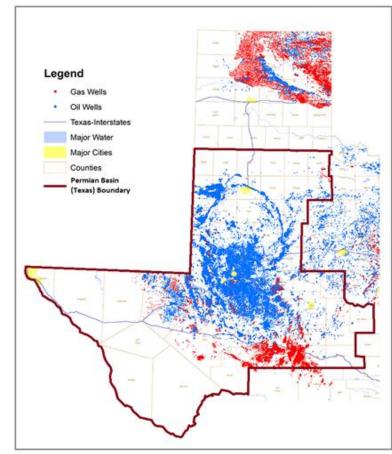

Outline

- Permian Basin emission inventory basis/ background
- 2011 emission inventory summary
- Permian Basin forecast emission inventory basis/background

Inventory Basis/Methods

- Basis: 2011NElv2-based Platform (2011v6.2)
- 2011 base year emissions from 2011 NEI
 - Midstream (Point) sources: provided by state agencies
 - Well Site (Area) Sources:
 - New Mexico: estimated using EPA Oil and Gas Tool
 - Texas: provided by state agency
- 2017 and 2025 future year emissions forecasts
 - O&G Activity Growth: AEO 2014
 - Control: Pertinent rulemakings
- EPA O&G sector emissions only
 - Confirmed O&G point source emissions include all O&G NAICS codes

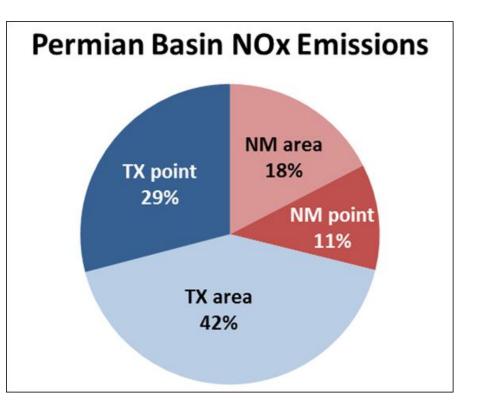
Permian Basin Well Locations (circa 2014)



Permian Basin (New Mexico)

Legend

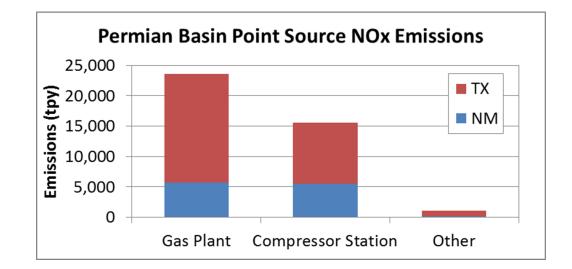
- Oil Wells
- Gas Wells


Permian Basin (Texas)

Source: Adapted from TCEQ Texas Oil and Gas Wells Map http://www.tceq.state.tx.us/assets/public/implementation/barnett _shale/bs_images/txOilGasWells.png

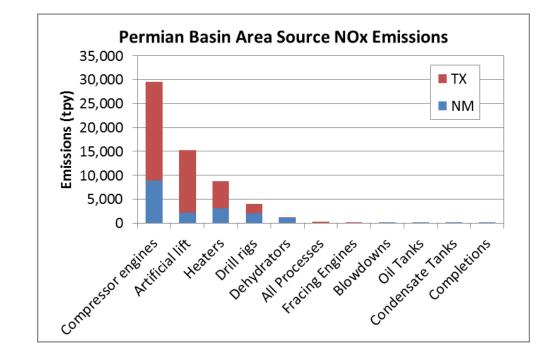
Permian Basin 2011 NOx Emissions

2011 NOx Emissions


- Totals (99,577 tpy)
 - 60% area sources(40% point sources)
 - 71% Texas (29% New Mexico)

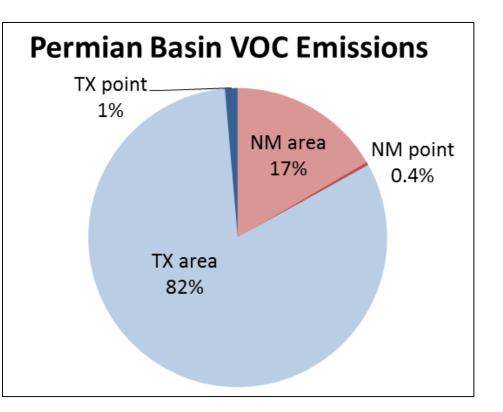
Permian Basin 2011 NOx Emissions

2011 NOx Emissions


- Point Sources (40,302 tpy)
 - 59% Gas Plants
 - 39% Compressor
 Stations
 - 3% Other (tank batteries, etc.)

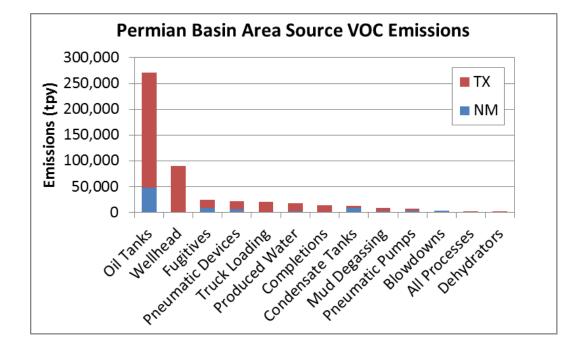
Permian Basin 2011 NOx Emissions

2011 NOx Emissions


- Area Sources
 (59,275 tpy)
 - 50% Compressor
 Engines
 - 26% Artificial Lift
 - 15% Heaters
 - 7% Drill Rigs
 - <3% All other categories combined

Permian Basin 2011 VOC Emissions

2011 VOC Emissions


- Totals (507,813 tpy)
 - 99% area sources (1% point sources)
 - 83% Texas (17% New Mexico)
 - combined

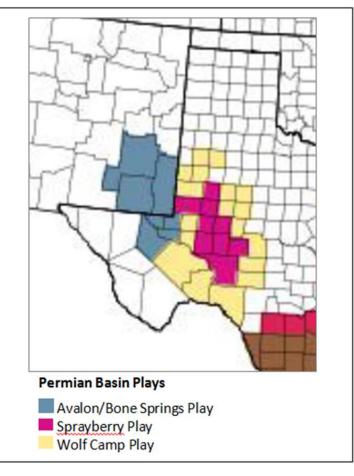
Permian Basin 2011 VOC Emissions

2011 VOC Emissions

- Area Sources (498,889 tpy)
 - 55% Oil Tanks
 - 18% Wellhead
 Venting
 - 5% Fugitives
 - 4% Pneumatic
 Devices
 - 4% Truck Loading
 - 4% Produced Water
 - <11% All other categories combined

Permian Basin 2011 Inventory

Criteria Pollutant Emissions Summary


	Туре	2011 Permian Basin O&G Emissions (tpy)					
State		NOX	VOC	СО	SO2	PM10	PM25
NM	area	17,354	84,140	20,694	190	518	516
	point	11,367	1,887	5,428	12,340	171	170
NM Total		28,721	86,027	26,123	12,530	689	686
ТХ	area	41,921	414,749	36,820	2,728	707	705
	point	28,935	7,036	16,699	5,136	935	920
TX Total		70,856	421,786	53,519	7,864	1,642	1,626
Grand Total		99,577	507,813	79,642	20,395	2,331	2,312

Permian Basin Forecast

Activity Growth

- O&G activity growth factors based on AEO 2014
- By O&G play growth factors (see figure)
- Southwest region growth factors outside of specified plays

	Oil Well	Gas Well	Oil and Gas					
Play / US Region	Sources	Sources	Well Sources					
Ratio 2017:2011								
Sprayberry Play	2.500	2.500	2.464					
Wolfcamp Play	2.500	2.500	2.500					
Avalon/Bone Springs Play	1.886	1.908	1.525					
Southwest Region	1.004	1.350	0.972					

Source: 2011v6.2 Modeling Platform TSD, excerpt from Figure 4-1

Permian Basin Forecast

Controls

- 2011NElv2-based Platform O&G emission forecasts account for controls per the following regulations
 - New Source Performance Standards (NSPS) Subpart OOOO (area and point sources)
 - Reciprocating internal combustion engine (RICE) NSPS Subparts JJJJ and IIII and NESHAP Subpart ZZZZ (area and point sources)
 - Industrial/Commercial/Institutional Boilers and Process Heaters Maximum Achievable Control Technology (MACT) Rule (point sources)
 - Standards of Performance for Turbines 40 CFR Part 60 -Subpart KKKK (point sources)
 - Process Heaters NSPS (point sources)

Permian Basin Forecast Emissions

• Future year emissions will be summarized after the future year is determined

Task 3: Juarez and Mexico Border Inventory Current and Future Years

Lead: University of North Carolina

Task 3 Objectives and Deliverables

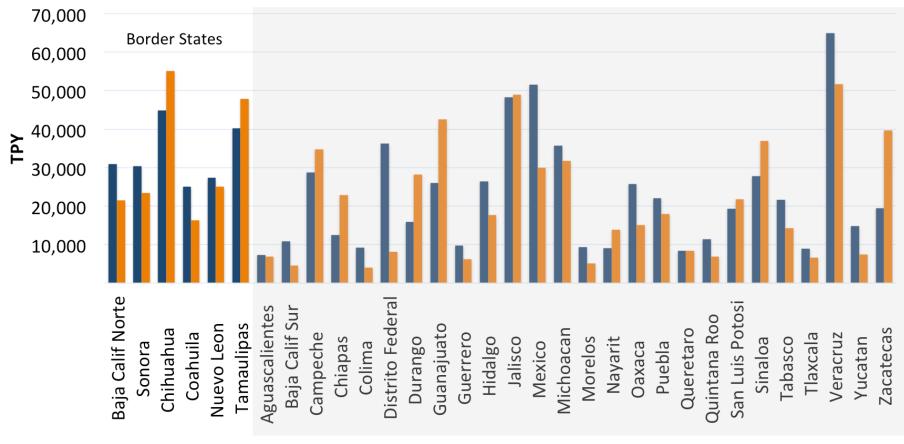
• Objectives

- Review available inventories and emissions input data for Juarez and Mexico border states
- Recommend 2011 and future year inventories for the SNMOS
- Deliverables
 - Power Point Presentation on Mexico emissions to be used in 2011 base and future year modeling (Completed 11/30/2015)
- Tasks
 - Coordinate with NMED, EPA, and others as needed to gather the bestavailable current and future year inventories for Northern Mexico. (Completed 9/30/2015)
 - Develop deficient inventory components, as needed
 - Collect and process ancillary emissions data (spatial surrogates, temporal profile, chemical speciation) (Completed 11/1/2015)

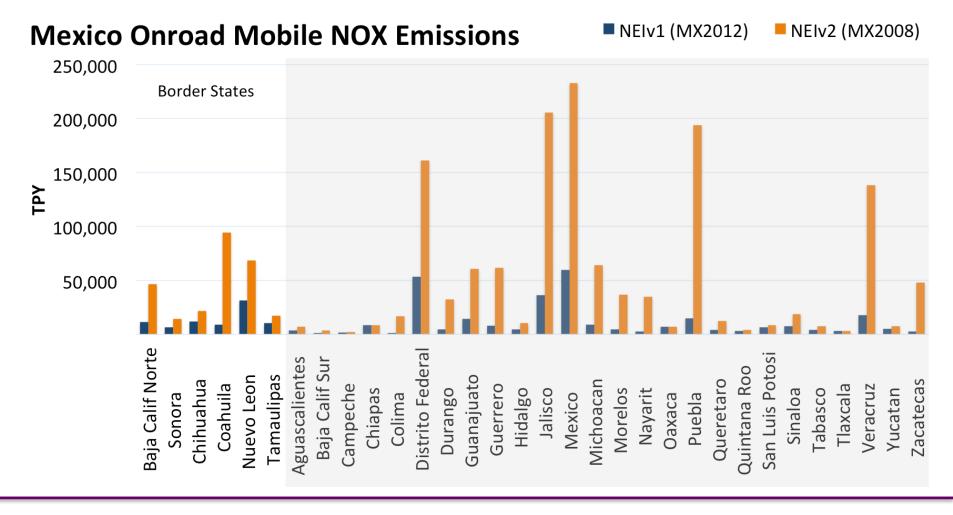
• US EPA 2011 Modeling Platforms

– NEI 2011v1

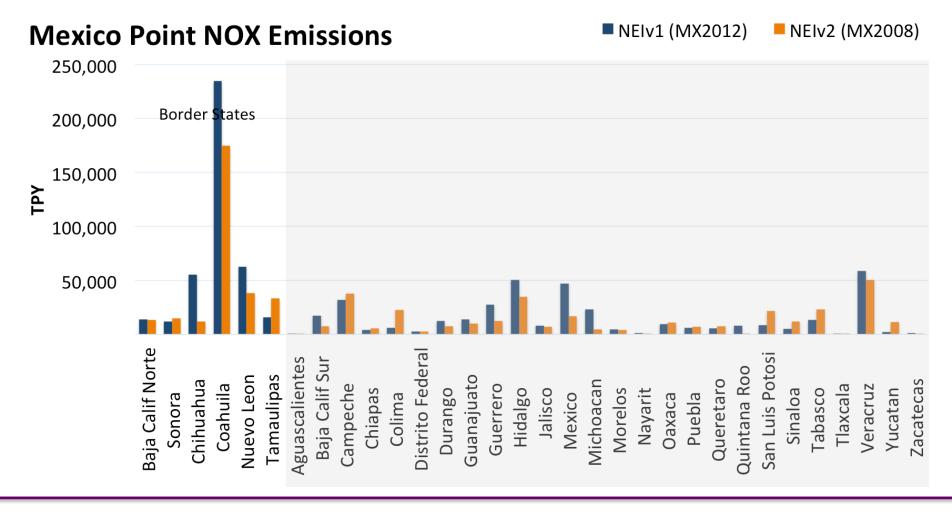
- 1999 Mexico NEI (INEM) projection to 2012
- Documentation: <u>EPA TSD</u>; <u>ERG Inventory Conference</u> <u>Paper</u>
- Projection years: 2018, 2025


– NEI 2011v2

- 2008 INEM inventory with corrections
- Documentation: <u>ERG report to EPA</u>
- Projection Years: 2018, 2025

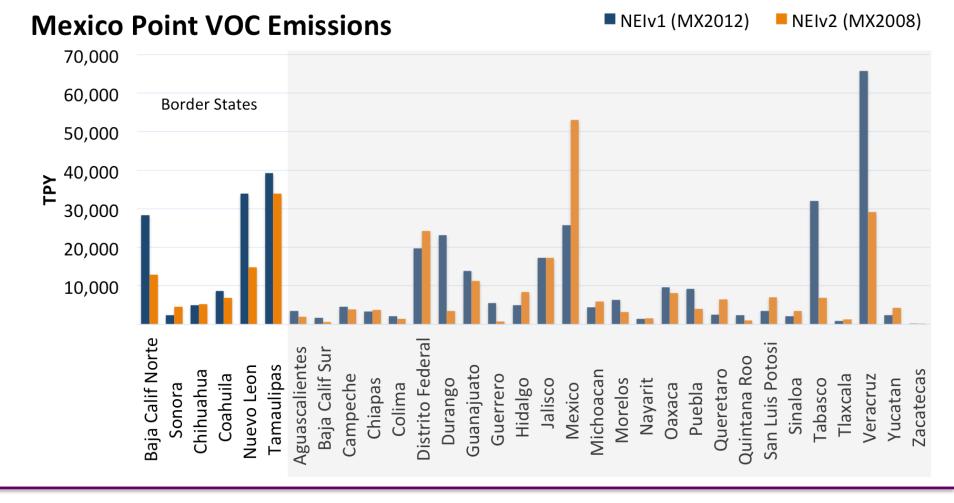

Mexico 2011 Inventory Analysis: NEIv1 vs NEIv2

Mexico Nonpoint NOX Emissions


NEIv1 (MX2012) NEIv2 (MX2008)

Mexico 2011 Inventory Analysis: NEIv1 vs NEIv2

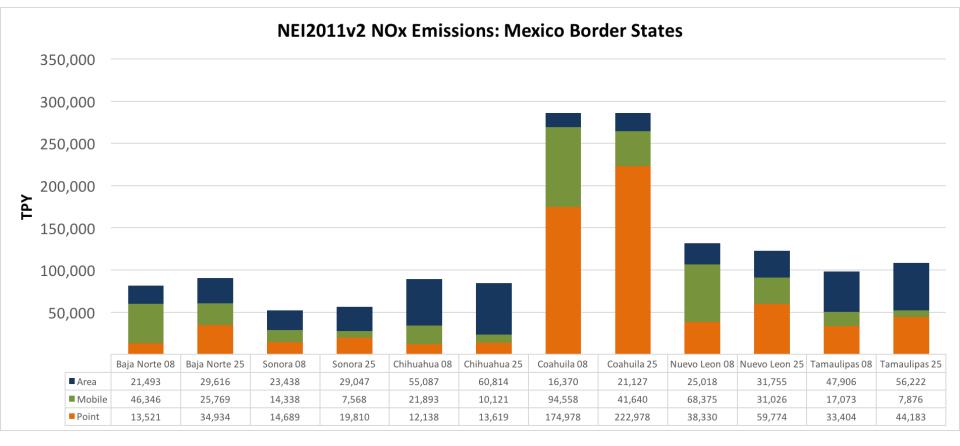
Mexico 2011 Inventory Analysis: NEIv1 vs NEIv2

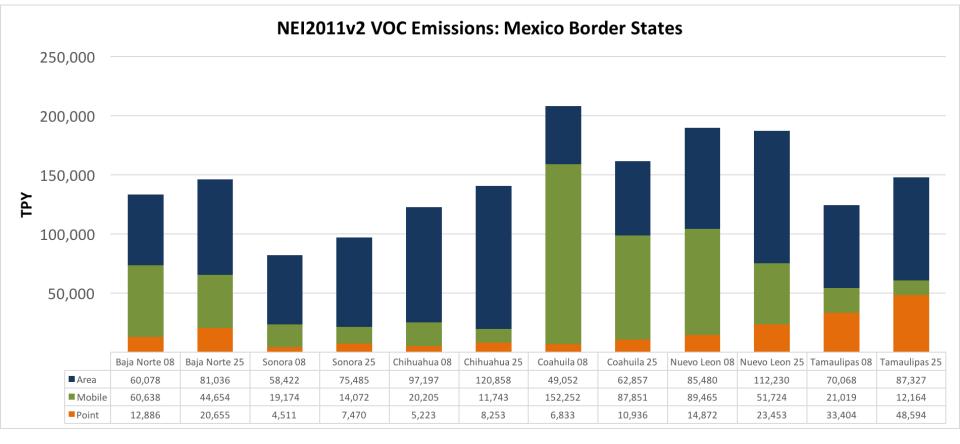

Mexico 2011 Inventory Analysis: NEIv1 vs NEIv2

Mexico Nonpoint VOC Emissions NEIv1 (MX2012) NEIv2 (MX2008) 450,000 **Border States** 400,000 350,000 300,000 250,000 ТРҮ 200,000 150,000 100,000 50,000 3aja Calif Norte **Distrito Federa** San Luis Potosi Aguascalientes Baja Calif Sur Quintana Roo Tamaulipas Nuevo Leon Guanajuato Chihuahua Queretaro Zacatecas Michoacan Hidalgo Tabasco Coahuila Campeche Guerrero Jalisco Nayarit Tlaxcala Veracruz Chiapas Durango Morelos Puebla Yucatan Colima Sinaloa Mexico Sonora Оахаса

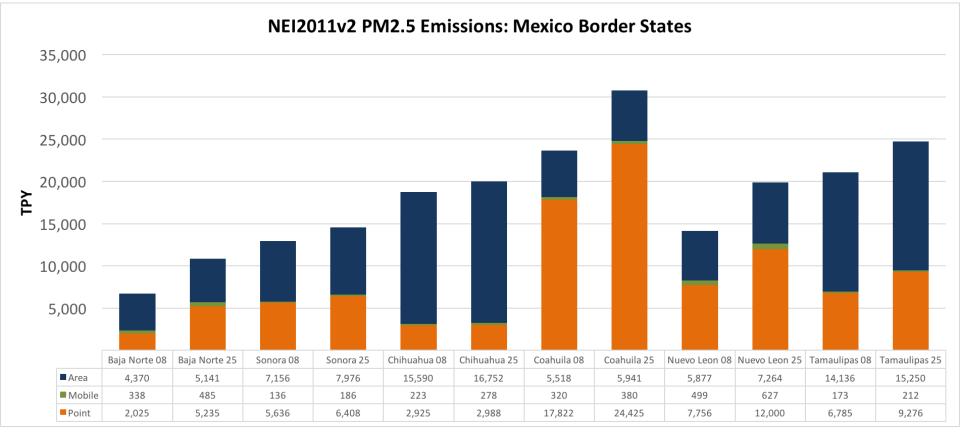
Mexico 2011 Inventory Analysis: NEIv1 vs NEIv2

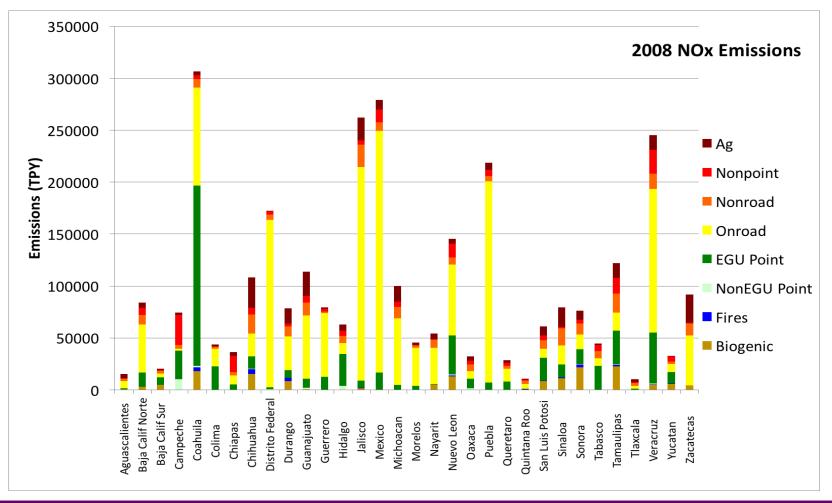
NEIv1 (MX2012) NEIv2 (MX2008) Mexico Onroad Mobile VOC Emissions 500,000 **Border States** 450,000 400,000 350,000 300,000 ТРΥ 250,000 200,000 150,000 100,000 50,000 3aja Calif Norte **Distrito Federa** San Luis Potosi Aguascalientes Baja Calif Sur Quintana Roo Tamaulipas Nuevo Leon Guanajuato Queretaro Zacatecas Chihuahua Chiapas Hidalgo Michoacan Coahuila Campeche Tabasco Jalisco Sinaloa Guerrero Nayarit Tlaxcala Veracruz Durango Morelos Yucatan Colima Puebla Oaxaca Mexico Sonora

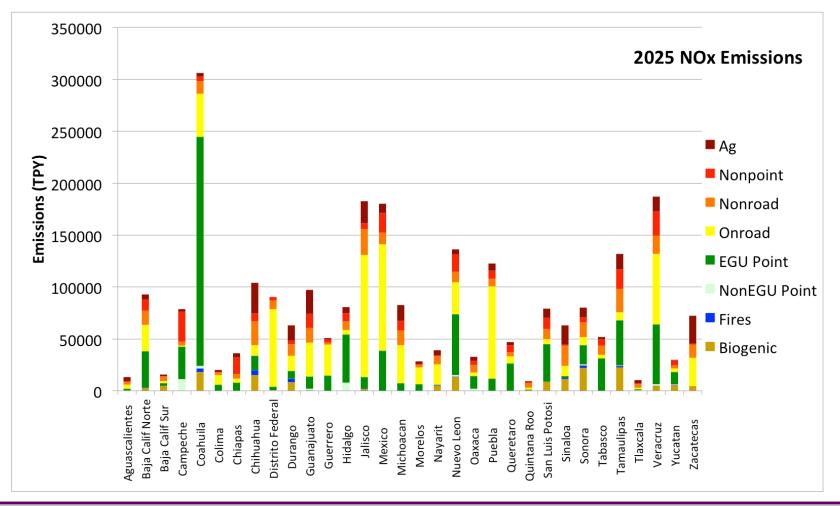

Mexico 2011 Inventory Analysis: NEIv1 vs NEIv2

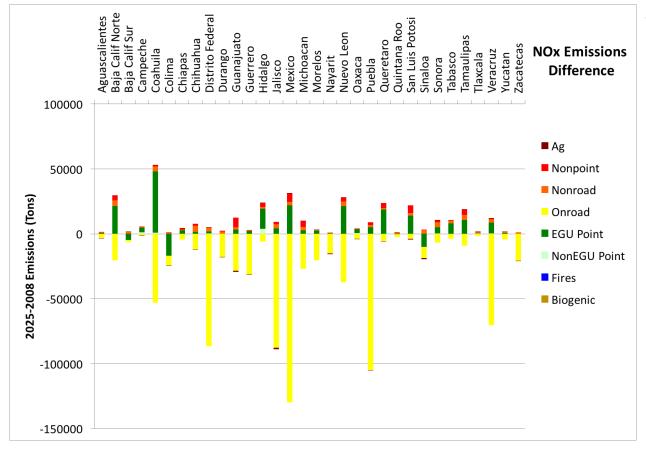

Base and Future Year Mexico Emissions

- On September 30 SNMOS conference call decision made in coordination with NMED to use NEI2011v2 Mexico inventories
- NEI2011v2: Mexico 2008, 2018, and 2025 inventories
 - Based on work by SEMARNAT published in early 2014 (Inventario Nacional de Emisiones de México)
 - Eastern Research Group (ERG) reviewed and improved the inventory for EPA in late 2014
 - Documentation: <u>ERG Report</u>
- Natural
 - Fires from WRAP PMDETAIL Phase II
 - Biogenics from MEGAN 2.10
 - Windblown Dust from WRAP WBD model

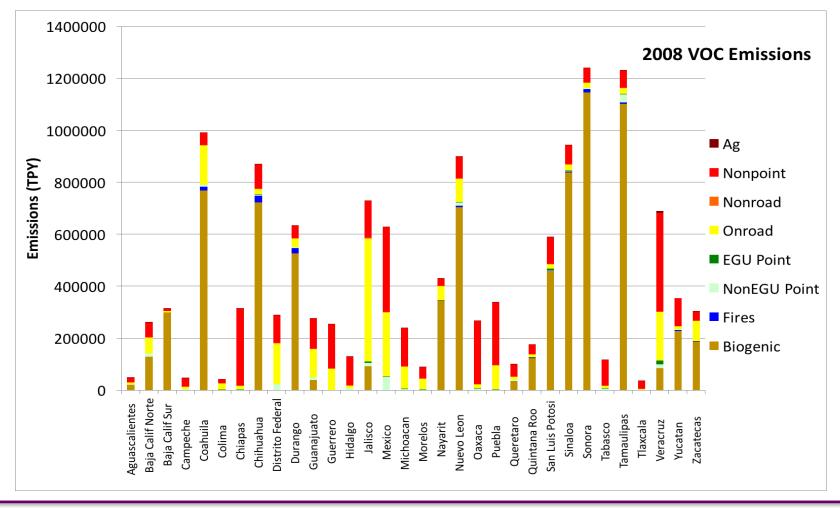

Mexico Inventory Analysis: 2008 vs 2025

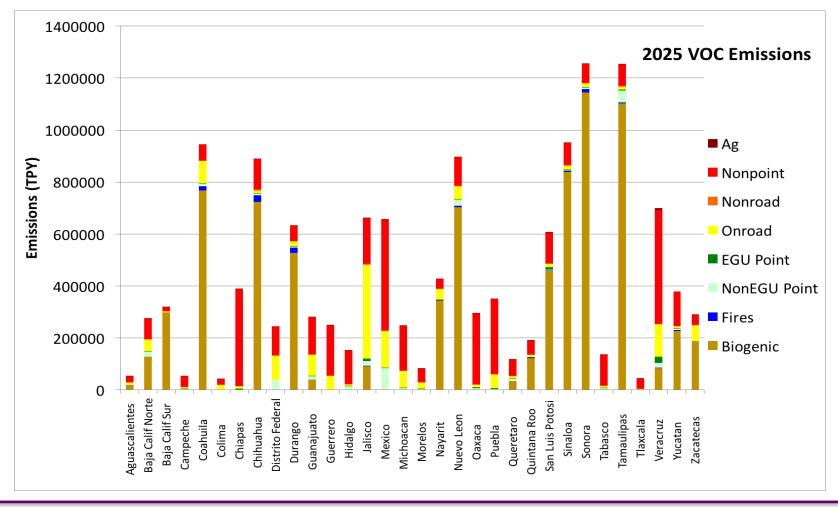

Mexico Inventory Analysis: 2008 vs 2025


Mexico Inventory Analysis: 2008 vs 2025

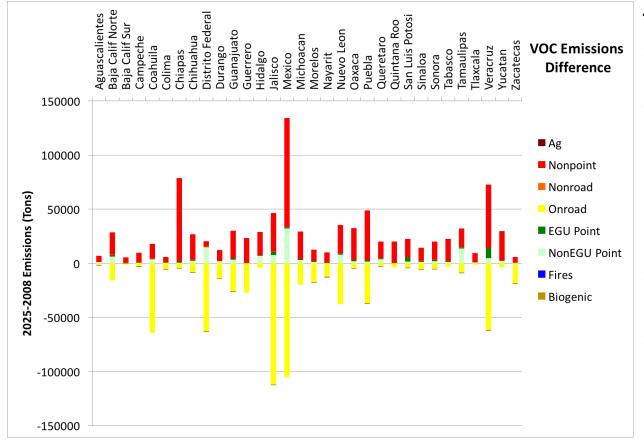

Mexico Inventory Analysis: NOx Emissions

Mexico Inventory Analysis: NOx Emissions

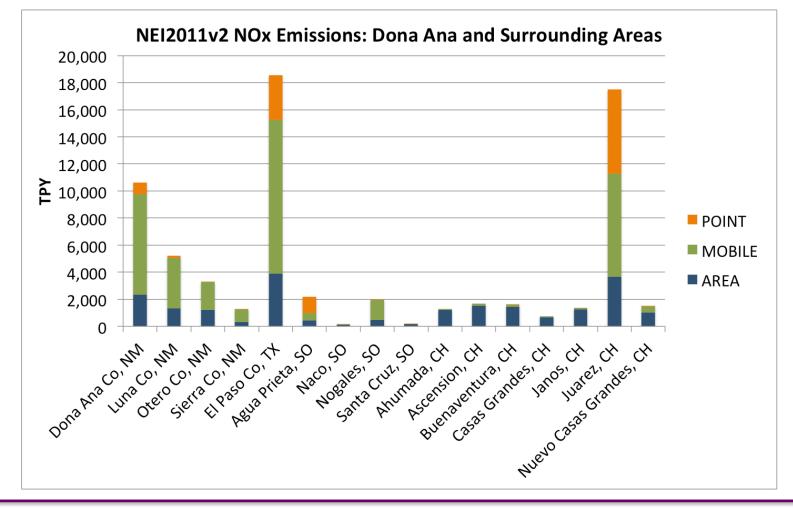

Mexico Inventory Analysis: 2008 vs 2025 NOx

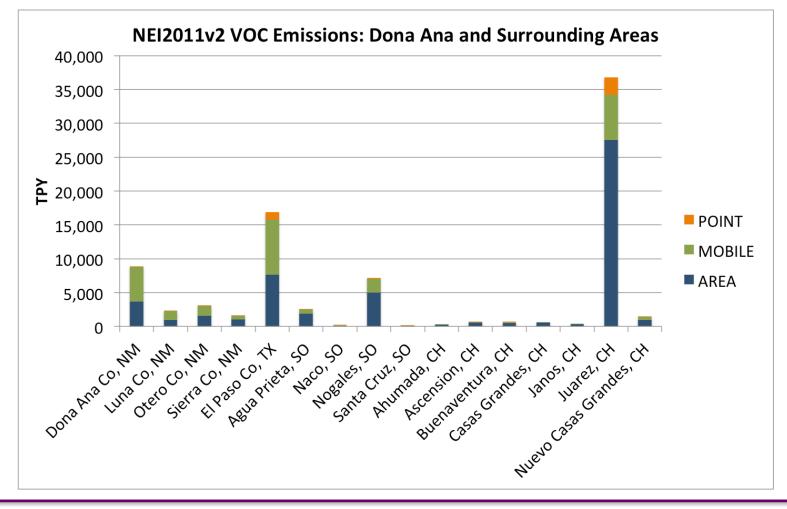

Trends Analysis

- Change from 2008 → 2025
- Border States
 - +11%: Baja N.
 - -0.1%: Coahuila
 - -4%: Chihuahua
 - -6%: Nuevo Leon
 - +8%: Tamaulipas
- Increases in Nonpoint, Nonroad, and EGU Point
- Decreases in Onroad NOx: 54% decrease from diesel vehicles, 50% decrease from gasoline vehicles


Mexico Inventory Analysis: VOC Emissions

Mexico Inventory Analysis: VOC Emissions

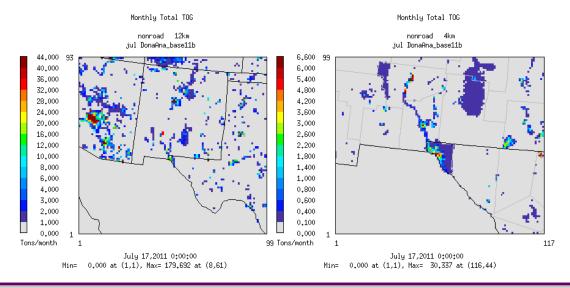

Mexico Inventory Analysis: 2008 vs 2025 VOC


Trends Analysis

- Change from 2008 → 2025
- Border States
 - +5%: Baja N.
 - -5%: Coahuila
 - +2%: Chihuahua
 - -0.3%: Nuevo Leon
 - +2%: Tamaulipas
- Increases in Nonpoint, NonEGU, and EGU Point
- Decreases in Onroad

Doña Ana and Surrounding Counties 2011 NOx El

Doña Ana and Surrounding Counties 2011 VOC EI


Task 3 Summary

- SNMOS will use 2008-based SEMARNAT/ERG inventory from the NEI2011v2 modeling platform
 - Future Year options include 2018 and 2025
 - Analyses in the above slides for 2025

Additional SNMOS Emissions Plots

- <u>http://ie.unc.edu/cempd/projects/data_viewer?proj</u> <u>ect=SNMOS</u>
- Results > View the results from a single simulation
- EMIS > SMOKE > DonaAna_base11b
- Plot Types
 - 2d Tile Plots

Ex. 12-km and 4km
July total US nonroad
mobile total Organic
Gas (TOG) emissions

Next Steps

Tasks to be Completed by February 29, 2016

- <u>Task 1</u>: 2011 WRF 36/12/4 km with 4 km focus on Dona Ana/El Paso/Juarez and Work Plan (Completed)
- <u>Task 2</u>: 2011 update Permian Basin O&G (Completed)
- <u>Task 3</u>: 2011 update of Juarez and nearby Mexico EI, 2020 Mexico emissions update (Completed)
- <u>Task 4</u>: SMOKE current 2011 NEI for 4 km domain (2/29/16)
- <u>Task 5</u>: Gridded 2011 biogenic, fires, wind-blown dust, lightning emissions for 4 km domain (2/29/16)
- **Task 6**: Develop 2011 4 km CAMx database and perform base case (2/29/16)
- Task 7: 2011 MPE and sensitivity modeling for Dona Ana County (4/30/16)
- Task 8: SMOKE current FY US EI and FY Mexico emissions update (4/30/16)
- <u>Task 9</u>: FY 4 km CAMx simulation (5/31/16)
- <u>Task 10</u>: FY ozone projections (MATS) (5/31/16)
- Task 11: FY emissions sensitivity/controls (8/15/16)
- Task 12: FY 4 km source apportionment run (9/15/16)
- <u>Task 13</u>: Air Quality Technical Support Document (11/18/16)