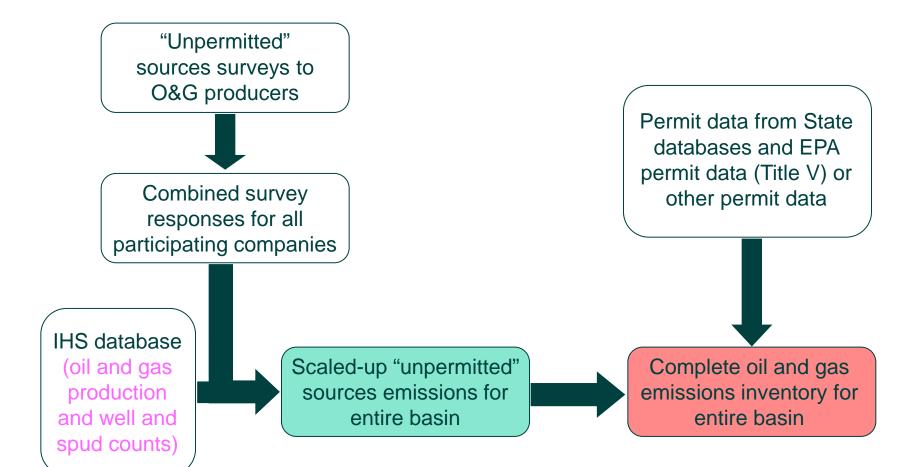
Upstream Oil and Gas Emission Inventories in the Inter-Mountain West

Tom Moore WRAP/WESTAR

National Tribal Forum on Air Quality Swinomish Indian Tribal Community, Anacortes, WA May 14, 2014

Overview

- Emission inventories background
- History of O&G emission inventory development
- WRAP Phase III inventories
- Technical methodology
- Results for an example basin
- Cross-basin comparisons
- Regulatory approach
- Emission inventory issues improvements and new concepts


Emissions Inventories

- Emissions are what is regulated, not ambient air quality through:
 - Limits on permitted sources and tracking of actual emissions
 - Strategies that address group or types of sources by specifying technology for operations (fuels, turnover of technology) or controls (specified emissions limits)
 - Fees for permitted sources allow regulators to recover costs to issue, inspect, and monitor impacts
 - Reporting and analysis of inventory data allows trend and compliance tracking – done for multiple purposes
 - A heightened effort is required to build and understand a baseline historical period inventory for a modeling study
 - Modeling studies also require projections of future emissions to assess control programs to efficient emissions reduction strategies

WRAP Phase III Inventories

- First regionally-consistent O&G inventory study in the **Intermountain West**
 - First inventory to cover all criteria pollutants (NOx, VOC, SOx, CO, PM)
- Scope of study includes 9 major basins: South San Juan (NM), North San Juan (CO), Denver-Julesburg (CO), Piceance (CO), Uinta (UT), Southwest Wyoming (WY), Wind River (WY), Powder River (WY), and Williston (MT & ND) Basins
 - All 9 basins completed as of June 2013
 - Production on tribal lands in 5 of 9 Basins
- Baseline inventories developed for 2006 with midterm projections to 2012 or 2015
- Baseline updates to 2008 for WestJump AQMS more updates planned 4

Phase III Methodology Diagram

Phase III Methodology

Unpermitted sources surveys to O&G producers

3a. 2006 Recompletions											
	Total Recompletions										
		Conducted in 200)6								
2b. Recompletio	on Details if provided for	a representative	well(s).								
	Completions Controls										
										Green	
							Volume of Gas		Type of Control	Completion	
		Representative	No. Wells				Vented (MCF)	Controls Used	(Flaring / Green	Control	Volume Flared
Survey ID	Representative Well	Well ID	Represented	Count(ies)	Field	Basin	uncontrolled	(Y/N)	Completion)	Efficiency	(MCF)
Ex. Well 1	representative	abc-1		Logan		Denver-Julesburg					
Well 1	representative					Denver-Julesburg					
Well 2	representative					Denver-Julesburg					
Well 3	representative					Denver-Julesburg					

- Detailed spreadsheet-based surveys sent to major operators in each basin
- Not all sources surveyed are "unpermitted"

Phase III Methodology

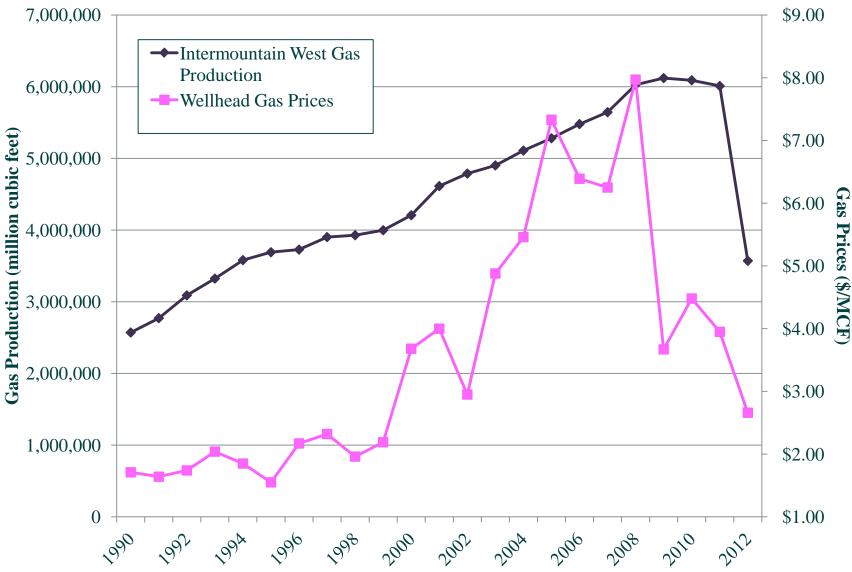
Scaled-up "unpermitted" sources emissions for entire basin

	Percentage Ownership in Phase III					
Basin	Gas	Liquid	Wells			
D-J	63%	58%	50%			
Piceance	84%	91%	75%			
Uinta	82%	78%	71%			
North San Juan	85%	93%	87%			
South San Juan	82%	48%	67%			
Wind River	97%	23%	54%			
Southwest						
Wyoming	77%	64%	54%			
Powder River	46%	24%	30%			
Williston	30%	33%	20%			

- Survey respondents in Phase III do not represent all production in a basin
- Scale-up of survey data necessary to capture all activity

Phase III Methodology

Permit data from State databases and EPA permit data (Title V) or other permit data


State	Emissions Thresholds (tons/yr)
New Mexico	Notice of Intent Required for Facilities with Emissions > 10tpy Criteria Pollutants; Permits Required for Facilities > 25 tpy
Colorado	Permits Required for All Sources with Emissions > 2 tpy Criteria Pollutants
Utah	Permits Required for All Sources with Potential to Emit (PTE) > 100 tpy
	Combustion Sources: All Compressor Engines Require Permit;
	Oil and Gas Process Sources : Variable
	Depending on Development Region but Not Less than 6 tpy VOC Emissions in Most Areas (Some
	Sources Require Permits at Any Emissions
Wyoming	Levels in JPAD Area or CDA) Permits Required for All Sources with Potential
Montana	to Emit (PTE) > 25 tpy;
	Permits Required for All Sources with Potential
North Dakota	to Emit (PTE) > 100 tpy

- Wide variation among states in permitting/reporting thresholds
- Now adding well-level data from EPA Tribal Minor Source reporting requirements

Phase III – Source Categories

- Large Point Sources
 (Gas plants, compressor stations)
- Drill Rigs
- Wellhead Compressor Engines
- CBM Pump Engines
- Heaters
- Pneumatic Devices
- Condensate and Oil Tanks
- Dehydrators
- Completion Venting

- Lateral compressor engines
- Workover Rigs
- Salt-Water Disposal Engines
- Artificial Lift Engines (Pumpjacks)
- Vapor Recovery Units (VRU's)
- Miscellaneous or Exempt Engines
- Flaring
- Fugitive Emissions
- Well Blowdowns
- Truck Loading
- Amine Units (acid gas removal)
- Water Tanks

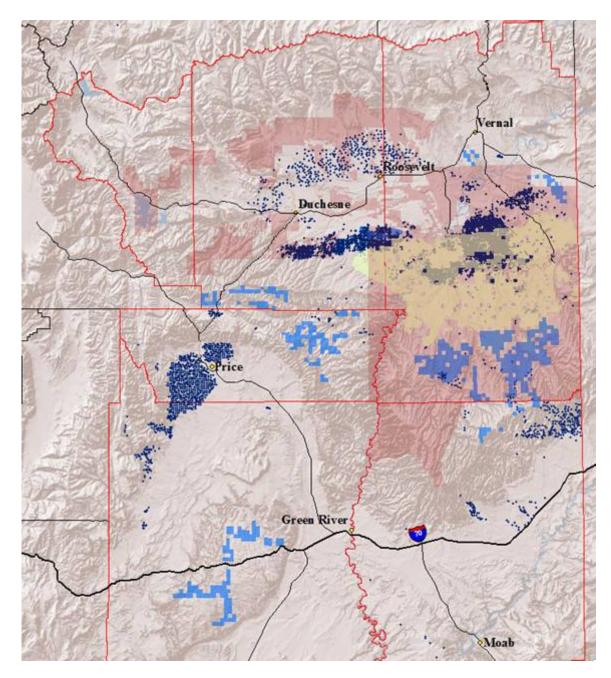
Intermountain West - Gas Production and Prices

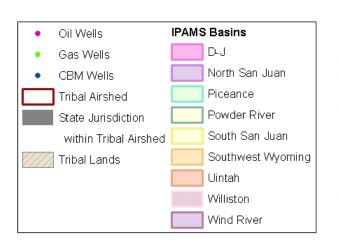
Eastern Utah

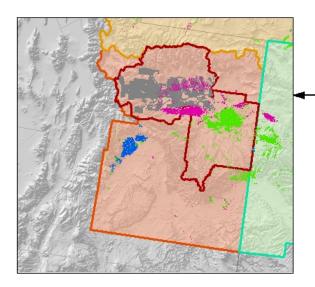
2006 Oil and Gas Production

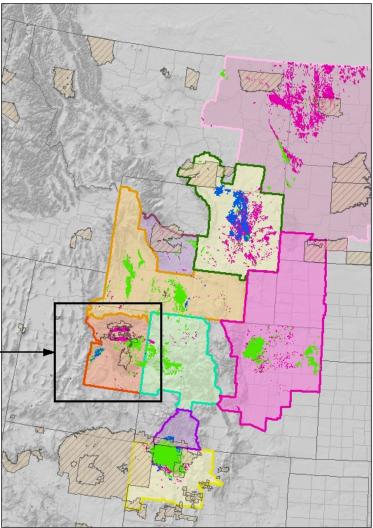
BLM proposed leasing for oil shale development

BLM proposed leasing for tar sands development


"Indian Country" – Regulatory authority controlled by the Tribes and EPA


Oil Shale Leasing


Tar Sands Leasing


"Indian Country"

Geographic Extent

Basin Oil and Gas Statistics

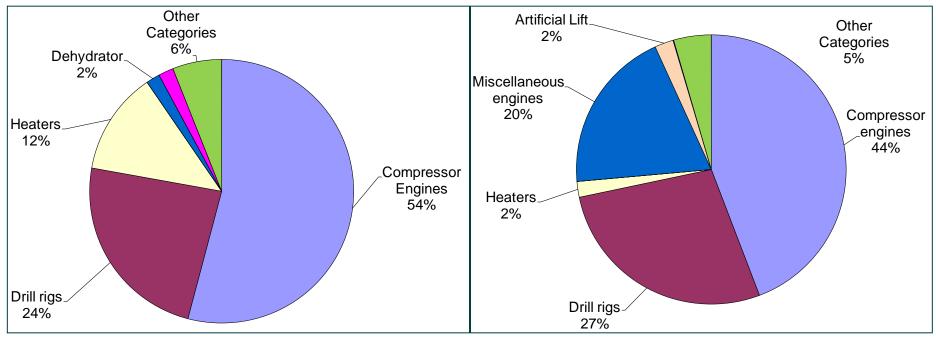
2008 Production Statistics

	Well Count			Oil Production (bbl)			Gas Production (MCF)			Spud Counts	
							Gas Well				
Basin	Total	Oil	Non-CBM Gas	CBM	Total	Oil Well Oil	Condensate	Total	Non-CBM	CBM	Total
D-J Basin	20,054	3,620	16,434	0	19,363,429	3,428,383	15,935,046	266,919,382	266,919,382	0	1,777
Uinta Basin	8,405	2,658	4,869	878	15,458,217	12,165,460	3,292,757	415,443,288	346,793,180	68,650,108	1,149
Piceance Basin	9,300	644	8,569	87	7,785,316	5,424,924	2,360,392	659,065,078	657,495,707	1,569,371	2,121
North San Juan Basin	2,969	97	1,003	1,869	39,462	31,491	7,971	432,276,612	33,749,342	398,527,270	226
South San Juan Basin	21,776	1,670	15,421	4,685	2,549,679	957,056	1,592,623	951,832,297	499,085,236	452,747,061	585
Wind River Basin	1,389	566	805	18	3,010,316	2,565,847	444,469	141,577,755	137,709,512	3,868,243	53
Powder River Basin	27,256	7,177	544	19,535	18,857,799	18,378,654	479,145	607,467,975	53,887,969	553,580,006	2,086
Southwest Wyoming Basin	11,072	1,143	9,616	313	17,334,716	5,548,836	11,785,880	1,735,260,915	1,718,031,661	17,229,254	1,418
Williston Basin*	8,144	6,623	1,518	3	105,868,409	101,729,112	4,139,297	150,025,060	149,979,559	45,501	716

Red figures are greatest value in each column, showing spatial variation in O&G E&P operations

* Williston Basin production statistics are for 2009

- Wide variation in total production of gas and oil/condensate among basins
- Gas production activity is more significant than oil production activity in all basins except the Williston Basin
- Spud counts are surrogates for where greatest exploration and production activity was occurring in 2008

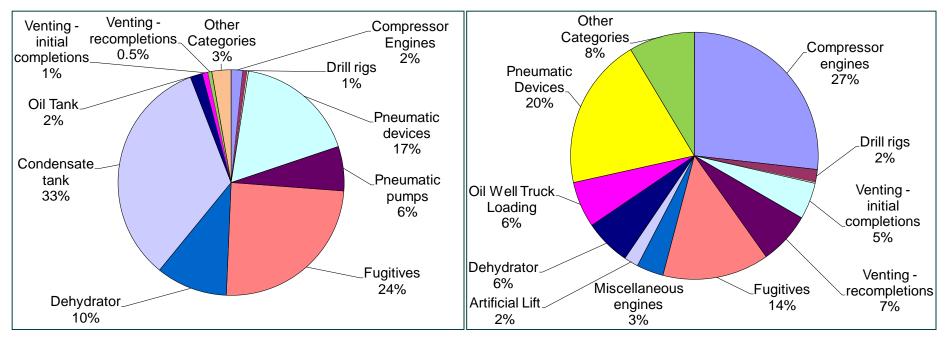

Basin Inventories

2008 Emission Inventories		Emissions (tons/yr)				
	Basin	NOx	VOC	СО	SOx	РМ
	D-J Basin	22,165	100,622	14,367	115	717
	Uinta Basin	15,508	97,302	11,569	431	716
	Piceance Basin	20,113	45,714	11,520	519	1,812
	North San Juan Basin	5,917	2,187	6,456	30	72
	South San Juan Basin	42,233	54,469	23,602	273	557
	Wind River Basin	1,335	10,993	2,062	1,276	31
	Powder River Basin	20,980	14,787	15,445	596	666
	Southwest Wyoming Basin	23,824	87,374	16,024	6,030	679
	Williston Basin*	14,387	357,798	18,765	2,081	1,045

* Williston Basin emissions are for 2009

- Wide variation in inventories among basins
- Drivers for variations include production types (liquid vs. gas, CBM vs. non-CBM, sour vs. sweet gas), regulatory control levels, intensity of activity

Results – Example NOx Emissions Breakdown By Source Category

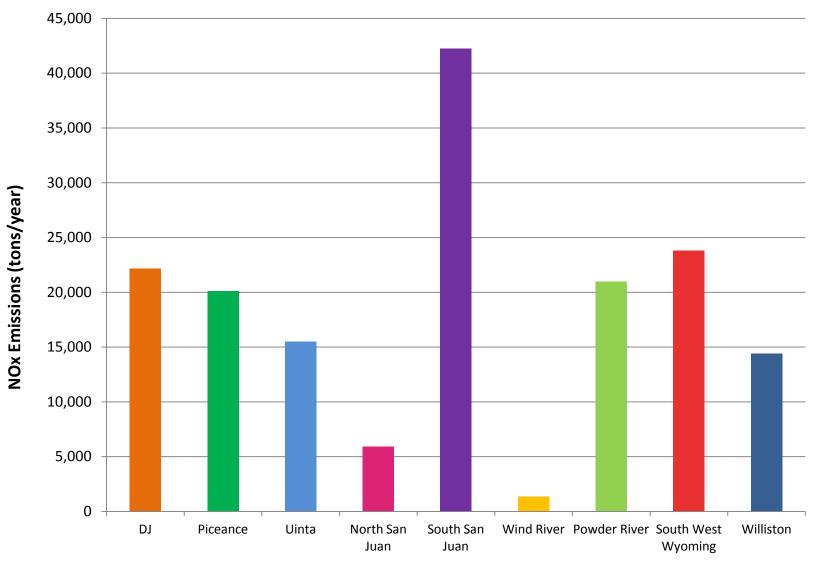


Southwest Wyoming Basin

Powder River Basin

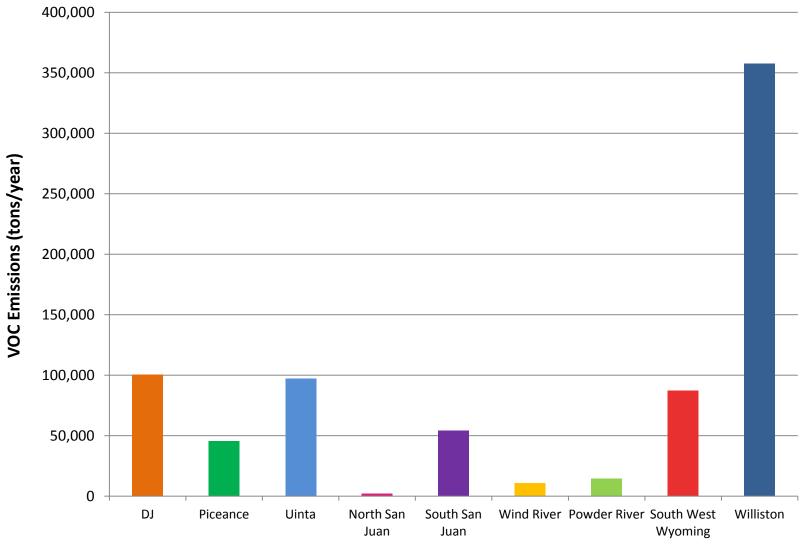
NOx emissions primarily comprised of compressor engines (central and wellhead) and drill rigs for basins in which active drilling was occurring

Results – Example VOC Emissions Breakdown By Source Category

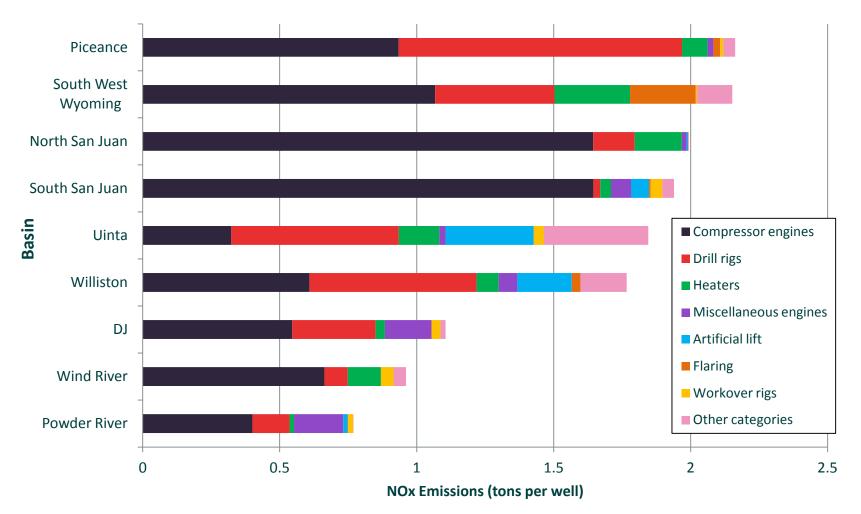


Southwest Wyoming Basin

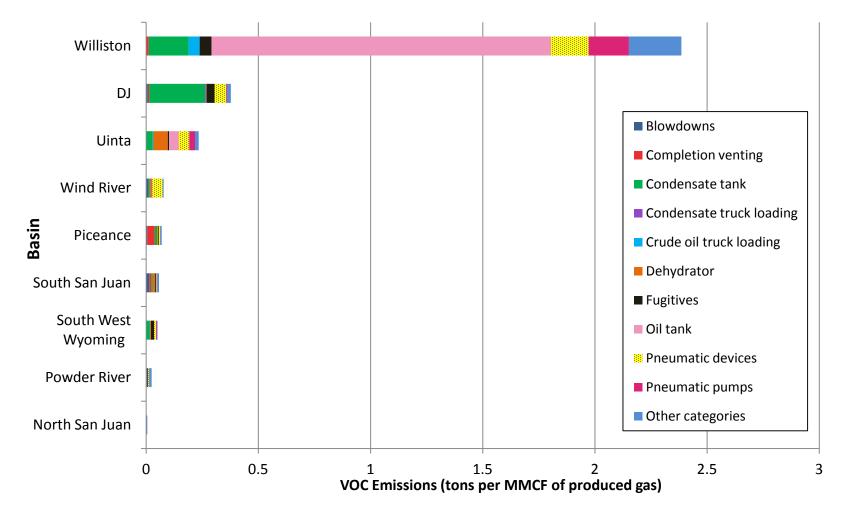
Powder River Basin


VOC emissions sources vary significantly from basin to basin – tank flashing, dehydration and pneumatic devices are consistently large source categories in most basins, but for CBM dominant basins other categories are significant

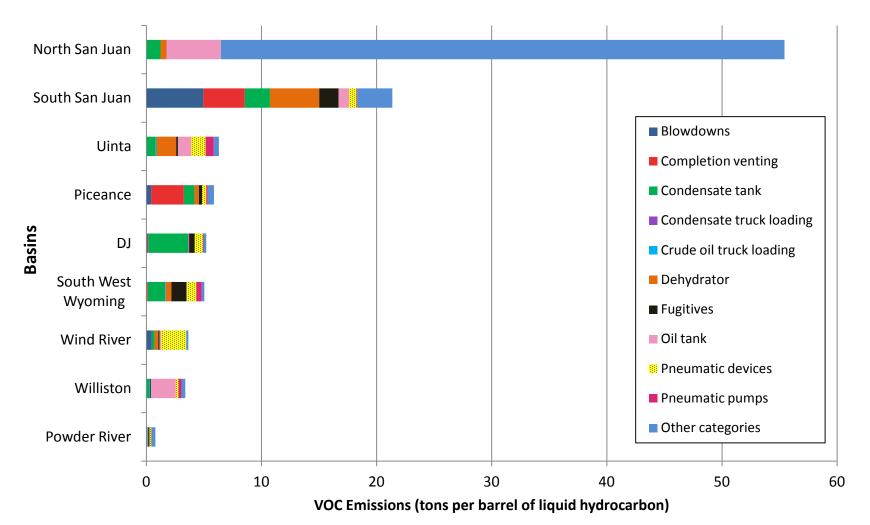
Cross-Basin – NOx Emissions


Basins

Cross-Basin – VOC Emissions

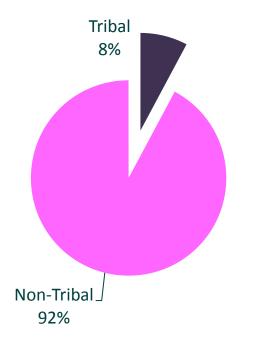

Basins

Cross-Basin – Per-Well NOx Emissions



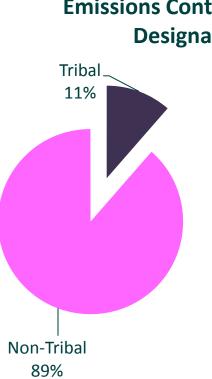
Per well NOx emissions relatively consistent across basins – differences mainly due to usage of compression and centralized vs. wellhead compression

Cross-Basin – Per-Unit-Gas-Production VOC Emissions


Per unit gas production VOC emissions vary widely across basins – differences due to levels of liquid hydrocarbon production (oil and condensate) and VOC content of produced gas

Cross-Basin – Per-Unit-Liquid-Production VOC Emissions

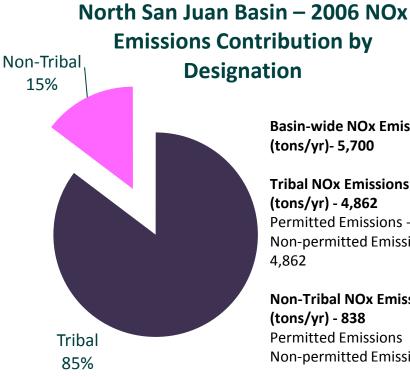
Per unit gas production VOC emissions vary widely across basins – differences due to levels of liquid hydrocarbon production (oil and condensate) and VOC content of produced gas


South San Juan Basin – 2006 NOx Emissions Contribution by Designation

Basin-wide NOx Emissions (tons/yr)- 42,075

Tribal NOx Emissions (tons/yr) - 3,287 Permitted Emissions -1,341 Non-permitted Emissions -1,946

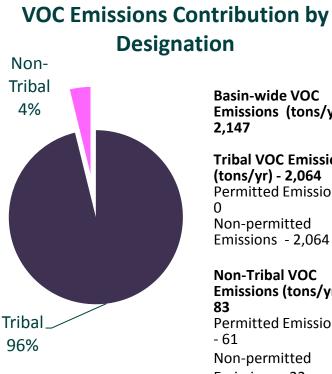
Non-Tribal NOx Emissions (tons/yr) - 38,788 Permitted Emissions -11,054 Non-permitted Emissions -27,734



South San Juan Basin – 2006 VOC Emissions Contribution by Designation

> Basin-wide VOC Emissions (tons/yr)-60,697

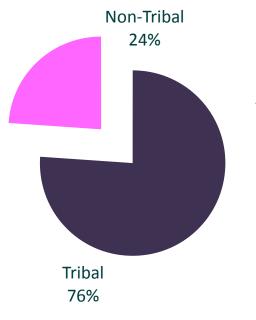
Tribal VOC Emissions (tons/yr) - 6,923 Permitted Emissions -427 Non-permitted Emissions -6,496


Non-Tribal VOC Emissions (tons/yr) -53,774 Permitted Emissions -4,969 Non-permitted Emissions - 48,805

Basin-wide NOx Emissions (tons/yr)- 5,700

Tribal NOx Emissions (tons/yr) - 4,862 Permitted Emissions - 0 Non-permitted Emissions -

Non-Tribal NOx Emissions Permitted Emissions - 757 Non-permitted Emissions - 81

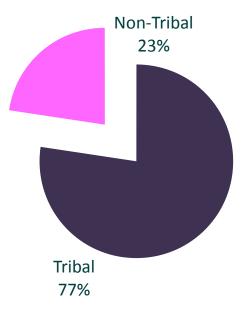

North San Juan Basin – 2006

Basin-wide VOC Emissions (tons/yr)-

Tribal VOC Emissions (tons/yr) - 2,064 Permitted Emissions -Non-permitted Emissions - 2,064

Non-Tribal VOC Emissions (tons/yr) -Permitted Emissions Non-permitted Emissions - 22

Uinta Basin – 2006 NOx Emissions Contribution by Designation



Basin-wide NOx Emissions (tons/yr)-13,093

Tribal NOx Emissions (tons/yr) - 9,962 Permitted Emissions -2,339 Non-permitted Emissions - 7,622

Non-Tribal NOx Emissions (tons/yr) -3,131 Permitted Emissions - 0 Non-permitted Emissions - 3,131

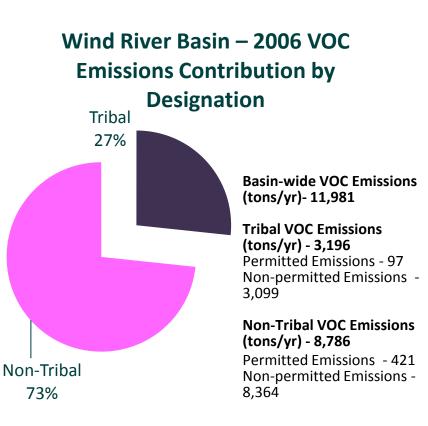
Uinta Basin – 2006 VOC Emissions Contribution by Designation

Basin-wide VOC Emissions (tons/yr)-71,546

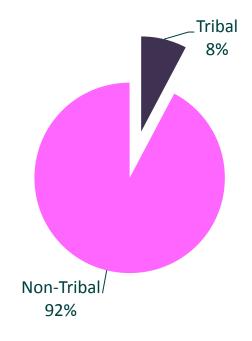
Tribal VOC Emissions (tons/yr) - 55,370 Permitted Emissions -1,320 Non-permitted Emissions - 54,049

Non-Tribal VOC Emissions (tons/yr) -16,176

Permitted Emissions - 0 Non-permitted Emissions - 16,176


Wind River Basin – 2006 NOx Emissions Contribution by Designation

Tribal 19%


Basin-wide NOx Emissions (tons/yr)-1,814

Tribal NOx Emissions (tons/yr) - 337 Permitted Emissions -217 Non-permitted Emissions - 119

Non-Tribal NOx Emissions (tons/yr) -1,478 Permitted Emissions -550 Non-permitted Emissions - 928

Williston Basin – 2009 NOx Emissions Contribution by Designation

Basin-wide NOx Emissions (tons/yr)-14,387

Tribal NOx Emissions (tons/yr) - 1,114 Permitted Emissions - 64 Non-permitted Emissions - 1,050

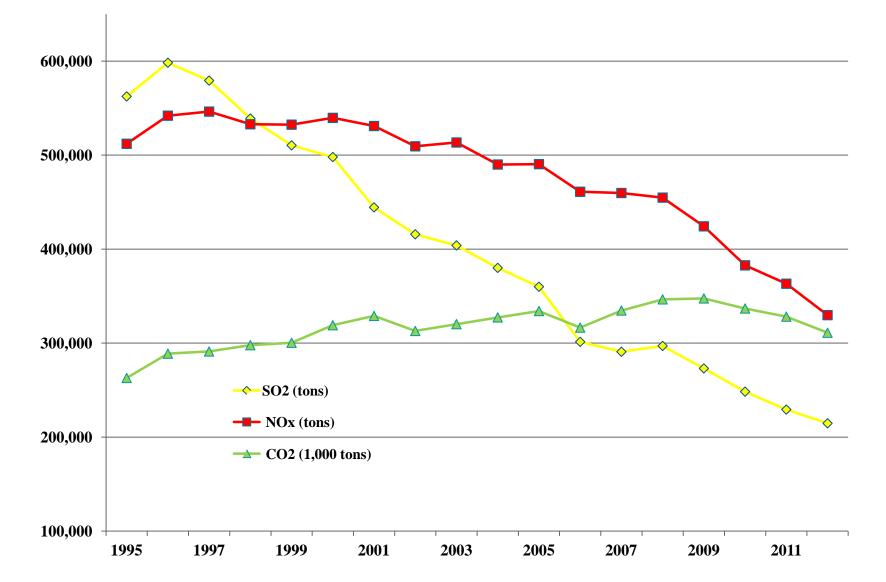
Non-Tribal NOx Emissions (tons/yr) -13,273 Permitted Emissions -4,142 Non-permitted Emissions - 9,131

Basin-wide VOC Emissions (tons/yr)-357,798

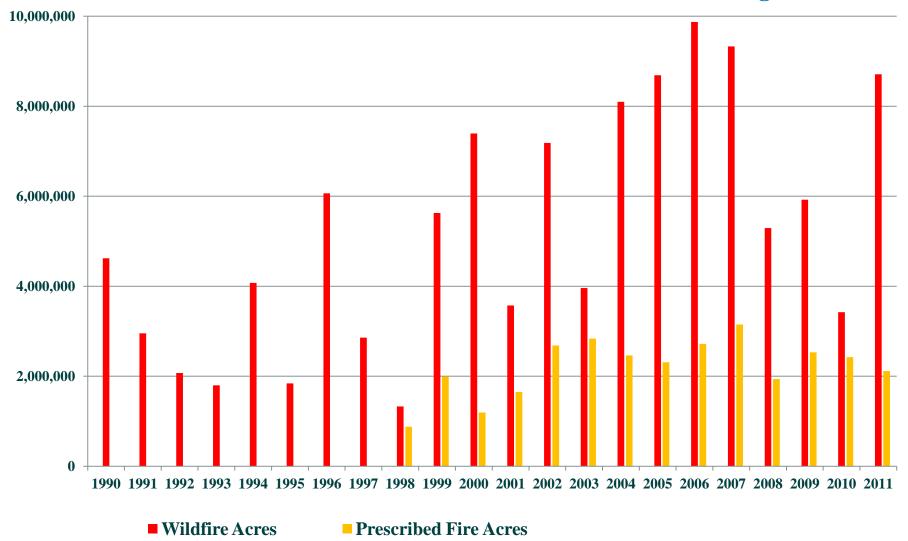
Tribal VOC Emissions (tons/yr) - 24,802 Permitted Emissions -18 Non-permitted Emissions - 24,784

Non-Tribal VOC Emissions (tons/yr) -332,996 Permitted Emissions -1,815 Non-permitted Emissions - 331,180

Projections of Future Emissions – Background


• Need

- Air quality planning to correct violations of health and welfare standards
- To prevent violations of standards and to reduce exposure
- Account for state and federal regulations "on the books and on the way"
- Effectively consider "known future" to estimate additional costs and benefits of additional control options
- Scope
 - Change across all source categories from baseline actual emissions into the future
 - Anthropogenic sources affected by
 - Economic factors
 - Changes in technology
 - Emerging standards
 - Biogenic or natural sources
 - Not as well understood
 - Affected by climate change and other factors
 - Usual practice is hold future projections constant

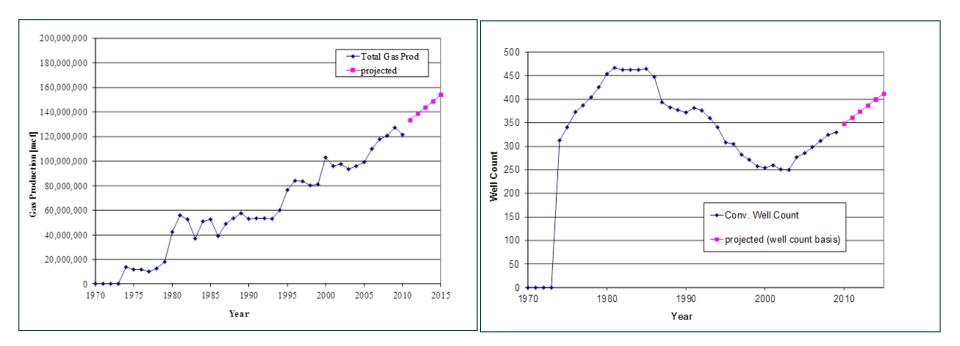

Western ozone and PM precursors - key emissions sources

- Power plants decreasing markedly
- Mobile sources controlled and emission rates decreasing markedly through federal rules and state testing programs
- Fire activity and effects are huge (among the largest air pollution sources in the West), receiving intensive study
 - Deterministic & Empirical Assessment of Smoke's Contribution to Ozone (<u>DEASCO</u>₃)
 - Prescribed and Other Fire Emissions: Particulate Matter Deterministic & Empirical Tagging & Assessment of Impacts on Levels (<u>PMDETAIL</u>)
 - Others....
- Biogenics (<u>natural plant sources</u>)
- Oil and gas.....
 - Phase III study
 - Emissions Inventories for <u>Williston and MT North Central (Great Plains) Basins</u>

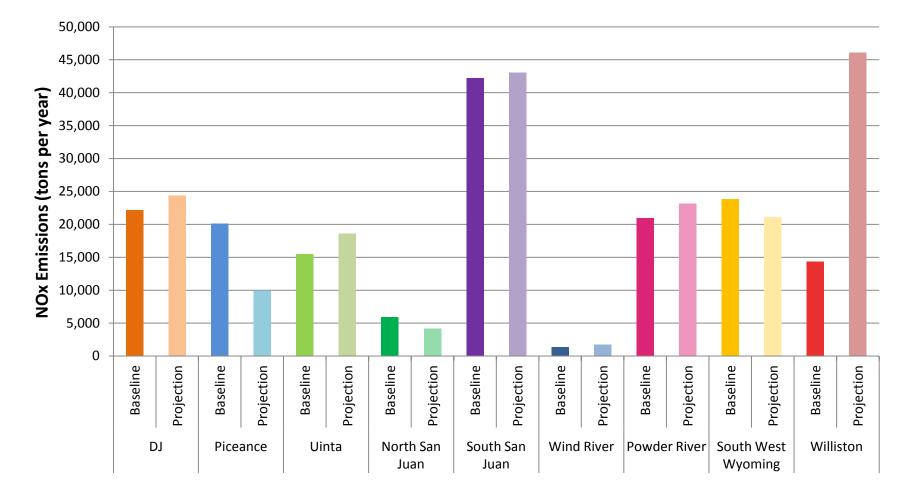
Power Plant Emissions Trends – Western Interconnect

Data Source: EPA Clean Air Markets Division

U.S. Wildfire and Prescribed Fires Acres Burned - 1990 through 2011

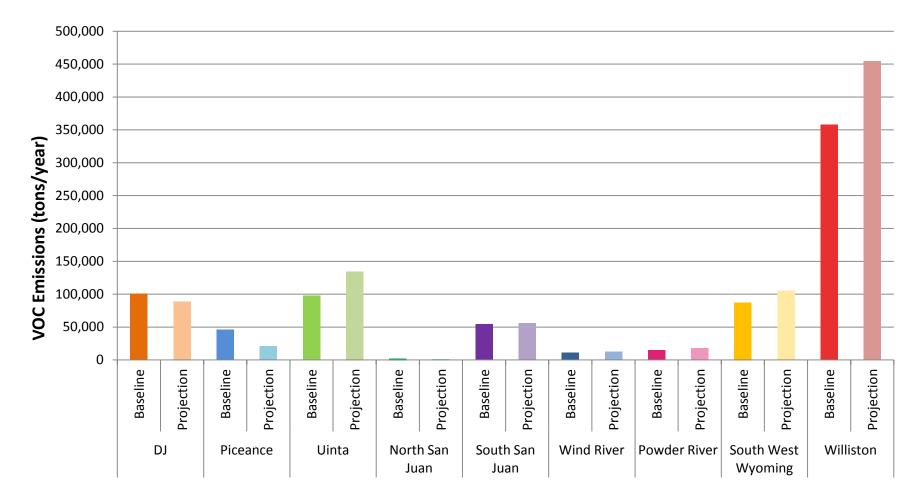

2012 and 2013 right behind 2006 in wildfire acres burned

Projections - Methodology


- No standardized methodology for conducting projections each inventory study has used different approaches (RMPs, NEPA projects, regional inventories)
- Phase III inventories use a three-step approach:
 - 1. Activity scaling factors
 - 2. "Uncontrolled" projections
 - 3. State and federal regulatory control requirements
- Activity scaling requires input from operators on planned activities and/or analyzes trends and/or relies on industry studies
- State and federal regulatory control requirements complex

Projections - Methodology

- Operators queried for planned drilling activities
- Well decline data gathered to generate basin-average curves
- Production projections constructed from operator data/historic trends



NOx Projections - Results

Emissions projections are complex mix of growth or decline factors and controls from natural equipment turnover and state/federal regulations

VOC Projections - Results

State regulations vary widely from state to state in emission source categories regulated and levels of control required

Regulatory Approaches – Point vs. Area

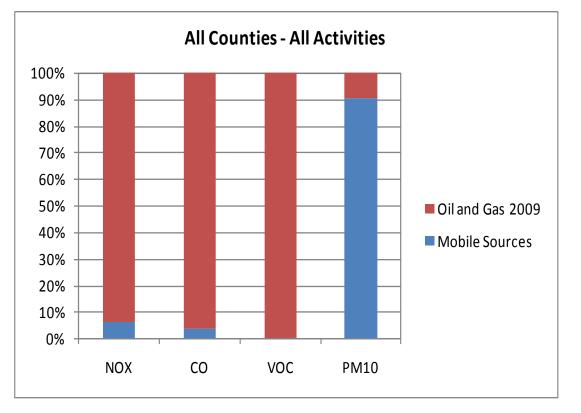
Point vs. Area Sources						
Pros	Cons					
Better spatial resolution	Resource intensive (to states and industry)					
Gather actual emissions/actual usage	Resource intensive to process					
Improved accuracy of emissions	Factor approach still used for minor sources					

- Expect improvement in spatial resolution and accuracy of emissions data from point sources but significant effort to process and track
- Colorado (APENs) and Wyoming (site surveys) already doing this

Produced water (evaporation) ponds

- Emission factors uncertain and highly dependent on composition, production type
- Seasonal/diurnal variations
- See for example Utah State University work to characterize emissions in Uinta Basin

Field gathering pipelines


- Lack of data on extent of pipeline infrastructure within fields
- Pipeline companies historically not part of the inventory process

Midstream sources

- Midstream sources not always captured in inventories – state reporting thresholds
- Midstream sources on tribal lands
- Midstream companies historically not part of the inventory process

Mobile sources

- Trucking and off-road equipment likely underestimated in existing mobile inventories
- Activities dispersed throughout basins and among basins
- See for example P3 study in Piceance Basin

As operators and regulators move to other systems to produce and move products and by-products (train, pipelines and electrification) and away from trucks and diesel/field gas combustion, new data is needed

Issues and New Concepts – Skewness

- Poorly performing and "nonaverage" sources could have significantly higher emissions than estimated in inventories
- Analogous to "smoking vehicles" in mobile source inventories
- Statistical sampling/monitoring of sources needed to develop methods to represent this in inventories
- See for example NOAA monitoring in Uinta Basin and CDPHE capture efficiency adjustments

Closing

- Technology for exploration and production has changed
- Physical scope of production, variation in production activities
- Oil and gas cost and benefit
- Clean Air Act structure
- Existing vs. future development
- Source category efforts toward continued collaborative study

Acknowledgements

Amnon Bar-Ilan and John Grant ENVIRON Intl. Corp. Novato, CA

> Kathleen Sgamma Western Energy Alliance Denver, CO

Doug Henderer Newfield Exploration Denver, CO

Lee Gribovicz Airstar Consulting

Thanks –

Tom Moore, WRAP Air Quality Program Manager Western States Air Resources Council (WESTAR)

<u>tmoore@westar.org</u> | o: 970.491.8837

Western Regional Air Partnership | <u>www.wrapair2.org</u>

