

Dimensions, Uncertainties, and Impacts of Emissions in the Western U.S.

April 14, 2015

Tom Moore
WRAP Air Quality Program Manager
WESTAR Council

EPA 2015 International Emission Inventory Conference "Air Quality Challenges: Tackling the Changing Face of Emissions"

Topics

- Overview of the WESTAR/WRAP organization
- Key issues and areas of focus
- Selected results from projects and studies related to this Conference

Overview of WESTAR and WRAP

- Purpose
 - Service organizations
 - Assist members in achieving their air quality management goals
- WESTAR
 - Training
 - Provide a forum for discussion
 - Inform policy-related discussions
 - www.westar.org

- Virtual organization, not incorporated
- 65+ member agencies include 15 state air agencies, NPS, FWS, BLM, USFS, EPA, and interested tribes and local air agencies/districts in the WRAP region
- Board has representatives across states, tribes, federal, and local agencies
- www.wrapair2.org

WRAP current projects and priorities

- precursors to Ozone, Particulates, and Regional Haze key western sources
 - Power plants
 - Mobile sources
 - Fire activity and effects
 - Biogenics (natural) emissions
 - Oil and gas exploration and production
 - All sources studied in comprehensive regional modeling analyses
 - West-wide Jumpstart Air Quality Modeling Study (<u>WestJumpAQMS</u>)
 - Western Air Quality Data Warehouse (<u>WAQDW</u>)

Western Electrical Interconnect

WECC Existing Transmission System

Western Interconnect Fossil Fuel Power Plant Emissions

1996 through 2014 data from EPA data for fossil fuel-fired electrical generating units in the 11-state Western Interconnect

^{*} Additional NOx reductions estimate - BART controls from Regional Haze baseline planning

^{**} Further NOx reductions from applying maximum post-combustion controls to all remaining units

Smoke/Fire & the Ozone and PM NAAQS, Regional Haze Rule

The Big Picture

Technical Products for air quality planning & management as required by the Clean Air Act

Future emissions, efforts to avert emissions & health/visibility impacts, & adapt to a changing/varying climate

2007

6/21 - 9/21Limited by bounding box

Source: WRAP Fire Tools

2008

6/21 - 9/21 Limited by bounding box

Source: WRAP Fire Tools

2011

6/21 - 9/21 Limited by bounding box

*Obtained additional small wildfire data for this inventory

Source: WRAP Fire Tools

Example Oil & Gas Study: Williston Basin 2011 Baseline Results NOx Emissions By Source Category

Geographic Extent

Cross-Basin – Per-Well NOx Emissions

Per well NOx emissions relatively consistent across basins – differences mainly due to usage of compression and centralized vs. wellhead compression

Cross-Basin – Per-Unit-Gas-Production VOC Emissions

Per unit gas production VOC emissions vary widely across basins – differences due to levels of liquid hydrocarbon production (oil and condensate) and VOC content of produced gas

Cross-Basin – **Per-Unit-Liquid-Production VOC Emissions**

Per unit gas production VOC emissions vary widely across basins – differences due to levels of liquid hydrocarbon production (oil and condensate) and VOC content of produced gas

Oil & Gas Projections - Methodology

- No standardized methodology for conducting projections
 - Each inventory study has used different approaches (EPA methods, Resource Management Plans, NEPA air quality projects, Western States Air Quality Modeling Study regional inventories)
- WRAP O&G inventories have used a three-step approach:
 - 1. Activity scaling factors
 - 2. "Uncontrolled" projections
 - 3. State and federal regulatory control requirements
- Activity scaling requires input from operators on planned activities, and/or analyzes trends, and/or relies on industry studies
- State and federal regulatory control requirements complex and continuing to evolve
 - National rules focused on new sources

Trends in projected emissions - example

Source: Western Air Quality Data Warehouse

What are (some of) the sources and control issues in the West related to a new Ozone standard?

- Urban and rural reactivity
- Transport and formation how much / how important?
- Public lands with large biogenic emissions and fire activity
 - How to characterize for effects of drought and climate variation?
- Federal and state mobile fuel and tailpipe controls
- Upstream Gas NSPS rules in place in 2015
 - Industry practices changing rapidly, e.g., green completions
- Point sources (dominated by EGUs for SO₂, NO_x)
 - Significant NO_x BART by ~2018
 - Less coal-fired electricity supply due to Clean Power Plan?
 - 17+ million acres of public lands leased in last 5 years for O&G exploration and production

Numerous sources within and outside the U.S. will continue to contribute to air quality impacts across the West

Some are further controllable

Others are less controllable, quasi-natural, and/or less well-understood - these may grow and/or vary significantly within the CAA planning timeframes

Counties with Monitors Violating Primary 8-Hour Ground-Level Ozone Standard (0.075 ppb)

(Based on 2011-2013 Air Quality Data)

3-year Average 4th Highest 8-Hour Ozone value by County 2011-2013

3-year Average 4th Highest 8-Hour Ozone value for Rural/Class I Sites 2011-2013

Contributions to Ozone at Rocky Mountain National Park

"Other Sources" Max Contrib. 4th High DMAX8 Ozone

Uncertainty in model estimates of U.S. Background

CAMx simulations for 2007 and 2008 at Canyonlands National Park – Eastern UT

EPA 2007 CAMx model: BC contributions of 36-57 ppb; still substantial U.S. anthropogenic contribution to O3.

WRAP 2008 CAMx model: BC contributions of 50-72 ppb, much larger than OAQPS modeling.

Same methodology - reasons for modeled differences are not fully understood

Meetings and Workshops

San Joaquin Valley Unified Air Pollution Control District – <u>Transboundary Ozone</u> <u>Pollution Conference</u> – March 31-April 2, Tenaya Lodge, Yosemite National Park

EPA Emission Inventory Conference – April 13-16, San Diego

WRAP-EPA <u>Modeling Air Quality from the Global to Local Scale</u> Workshop – May 11-15, Boulder, CO

Thanks –

Tom Moore, WRAP Air Quality Program Manager Western States Air Resources Council (WESTAR) e: tmoore@westar.org | o: 970.491.8837 Western Regional Air Partnership | www.wrapair2.org