May 12, 2017

MEMORANDUM

To: Tom Moore, WESTAR; Mark Jones, NMED From: John Grant, Rajashi Parikh, Amnon Bar-Ilan

Subject: EPA O&G Tool 2014 O&G Input Factor Recommendations for the Portion of Greater

San Juan and Permian Basins in New Mexico

As part of updates for the 2014 (v2) National Emission Inventory (NEI) development, the US Environmental Protection Agency (EPA) has solicited updates to basin factors and speciation factors that are inputs to nonpoint oil and gas (O&G) emissions estimated in the O&G Tool. Under contract to the Western States Air Resources Council (WESTAR), Ramboll Environ has developed recommendations for Permian Basin and Greater San Juan Basin O&G Tool Inputs as described below. Corresponding electronic spreadsheet files are provided separately with the recommended updates.

Permian Basin Input Factor Review

Current Permian Basin O&G Tool inputs for basin factors and speciation factors are primarily based on Subpart W, Texas Commission on Environmental Quality (TCEQ), CenSARA (2012)¹, and national data sets. Table 1 shows Permian Basin nitrogen oxides (NOx) and volatile organic compound (VOC) O&G emission contributions as estimated in the 2014 (v2) O&G Tool. Ramboll Environ reviewed basin factors for specific source categories (highlighted rows in Table 1) per direction from New Mexico Environmental Department (NMED) staff². Ramboll Environ made a generalized review of speciation factors.

Table 1. Permian Basin 2014 (v2) O&G Tool NOx and VOC emissions³.

NMED		NOx Emissions		VOC Emissions	
Review Request? ²	Source Category	(tpy)	(%)	(tpy)	(%)
N	Artificial Lifts	2,628	23%	34	0%
Υ	Associated Gas	1	0%	1,969	2%
N	Condensate Tanks	1	0%	477	0%
Υ	Crude Oil Tanks	25	0%	80,306	70%
N	Dehydrators	57	0%	590	1%
N	Drill Rigs	3,900	34%	246	0%
Υ	Fugitives	0	0%	10,108	9%
N	Gas-Actuated Pumps	0	0%	2,821	2%
N	Heaters	399	3%	38	0%

¹ www.censara.org/filedepot download/56064/14

² Email from Mark Jones (New Mexico Environment Department), April 19, 2017.

³ 2014 (v2) Permian Basin O&G emission results provided via email from Regi Oommen (ERG), April 11, 2017.

NMED		NOx Emissions		VOC Emissions	
Review Request? ²	Source Category	(tpy)	(%)	(tpy)	(%)
Υ	Hydraulic Fracturing	981	9%	62	0%
	Lateral/Gathering Compressor				
Y ^A	Engines	1,828	16%	50	0%
Υ	Liquids Unloading	28	0%	3,832	3%
N	Loading Emissions	0	0%	16	0%
N	Mud Degassing	0	0%	2,052	2%
Υ	Pneumatic Devices	0	0%	7,628	7%
Υ	Produced Water	0	0%	1,551	1%
Υ	Well Completions	10	0%	2,265	2%
Y^1	Wellhead Compressor Engines	1,553	14%	37	0%
	Grand Total	11,410	100%	114,081	100%

^A Compressor engine input factors for the Permian basin are being evaluated by TCEQ staff (Michael Ege). Ramboll Environ will not perform additional analysis for this source category.

Permian Basin Factors

We compared basin factor inputs for select source categories to those documented in Grant et al. (2016)⁴. Grant et al. (2016) input factors for the Permian Basin are based primarily on the O&G emission inventory for the portion of the Permian Basin in Texas compiled by TCEQ. Appendix A documents Permian basin factors in the O&G Tool side-by-side with input factors from Grant et al. (2016) for select source categories. Table 2 provides recommendations for Permian basin factor updates by source category and well type; only minor updates are recommended.

Table 2. Permian basin factor update recommendations (U=update, N = no update).

Source Category	Gas Wells	Oil Wells
Associated Gas	N	-
Crude Oil Tanks ^C	-	Υ
Fugitive Components ^A	U	U
Hydraulic Fracturing	N	
Liquids Unloading ^B	U	-
Pneumatic Controllers	N	N
Produced Water	N	N
Well Completions	N	N

A Minor update for pump seals components

Permian Speciation Factors

Our professional judgment is that Permian Basin speciation factors are generally reasonable and need not be updated at this time. Detailed analysis of these speciation factors was not feasible given schedule and resource constraints for this analysis.

^B Minor update for liquid unloading controls

^c Update for crude oil tank control fraction only

⁴ https://www.wrapair2.org/pdf/2016-11y Final%20GSJB-Permian%20El%20Inputs%20Report%20(11-09).pdf

Greater San Juan Basin Input Factor Review

Current San Juan Basin O&G Tool inputs for basin factors and speciation factors are primarily based on Subpart W, WRAP Phase III⁵, CenSARA (2012), and other national data sets. Ramboll Environ has recommended updates based on Grant et al. (2016).

Greater San Juan Basin Factors

Greater San Juan Basin O&G Tool basin factor updates have been compiled from Grant et al. (2016). Grant et al. (2016) input factors for the Greater San Juan Basin are based primarily on operator surveys and Subpart W data. Table 3 shows the basin factor updates by well type and source category. For fugitive components, service types available in the O&G Tool are restricted by well type; not all components were able to be included in the updated basin factor tables (see Table 4).

Table 3. Greater San Juan basin factor update recommendations (U=update, N = no update).

Source Category	Gas Wells	CBM ⁶ Wells	Oil Wells
Artificial Lift Engines ^A	U	-	-
Associated Gas	U	-	-
Condensate Tank	U	U	-
Crude Oil Tanks	-	-	U
Dehydrators	l	J	-
Drill Rigs (Horizontal)		U	
Drill Rigs (Vertical)		U	
Fugitive Components	U	U	U
Gas Actuated Pumps ^D	N	N	Ν
Heaters	U U		J
Hydraulic Fracturing	U		
Lateral Compressor Engines	U -		ı
Liquids Unloading	U	U	ı
Loading	U	U	U
Mud Degassing	N	N	Ν
Pneumatic Controllers	U	U	U
Produced Water ^B	N	N	N
Well Completions	U	U	U
Wellhead Compressor Engines ^C	U	U	U
Refracturing Engines	not in O&G Tool;		ool;
Workover Rigs	consider inclusion in		
Water Pump Engines	future versions		ons

A Grant et al. (2016) identifies artificial lift engine prevalence at oil wells as 0.99 engines per well; this update should be made in a separate O&G Tool activity input table.

^B No updates are recommended since Grant et al. (2016) input data are based on an earlier version of the O&G Tool.

^c Grant et al. (2016) identifies wellhead compressor engine prevalence at gas wells and CBM wells as 0.94 engines per well; this update should be made in a separate O&G Tool activity input table.

^D Methodology differences do not allow for use of Grant et al. (2016) gas actuated pump inputs to estimate O&G Tool basin factors.

⁵ https://www.wrapair2.org/PhaseIII.aspx

⁶ CBM refers to coalbed-methane

Table 4. Fugitive component counts for the Greater San Juan Basin.

	Compo	Component count/well ^A		
Location, service type, component type	Oil Well ^B	Gas Wells ^c	CBM Wells ^c	
Onshore, gas service - valve	47	81	80	
Onshore, gas service - connector	147	264	256	
Onshore, gas service - open-ended line	6	10	9	
Onshore, gas service - pressure relief valve	2	4	4	
Onshore, gas service – other ^D	<1	<1	0	
Onshore, light crude service - valve	5	<1	<1	
Onshore, light crude service - flange	10	<1	<1	
Onshore, light crude service - connector	6	<1	<1	
Onshore, light crude service - open-ended line	<1	0	0	
Onshore, light crude service - pump	0	0	0	
Onshore, light crude service - other ^D	<1	<1	<1	
Onshore, heavy crude service - valve	0	0	0	
Onshore, heavy crude service - flange	0	0	0	
Onshore, heavy crude service - connector	0	0	0	
Onshore, heavy crude service - open-ended line	0	0	0	
Onshore, heavy crude service - other ^D	0	0	0	
Onshore, water service - valve	<1	0	0	
Onshore, water service - connector	<1	0	0	
Onshore, water service - open-ended line	<1	0	0	
Onshore, water service - pressure relief valve	0	0	0	
Onshore, water service - other ^D	12	0	0	

A Highlighted cells not able to be included in updated basin factors because these fields do not exist in the basin factor input table.

Greater San Juan Basin Speciation Factors

Our professional judgment is that Greater San Juan Basin compositions are generally reasonable, except for 1) CBM well venting/loss profiles and 2) profiles for oil well and gas well venting/loss sources which indicate 0% weight fractions for hazardous air pollutants. We have provided CBM wells source category speciation factor file updates, but have not updated speciation factor files for oil or gas wells to resolve the issue of 0% weight fractions for hazardous air pollutants due to project schedule and resource constraints.

^B Gas service components at oil wells are not included in the basin factor table.

^C No light crude, heavy crude, or water service component counts at gas or CBM wells are available for input to the basin factor table.

^D No "other" device type input field is available in the basin factor table.

Recommendations

O&G Tool input factor implementation recommendations are as follows:

- 1. Update Permian basin factors as specified in Table 2.
- 2. Make no updates to Permian basin speciation factors.
- 3. Update Greater San Juan basin factors as specified in Table 3. Artificial lift and wellhead compressor engine prevalence listed in Table 3 footnotes should be updated in O&G Tool activity input tables.
- 4. Update Greater San Juan speciation factors for CBM venting/loss source categories.

Potential enhancements to the O&G Tool that would allow for inclusion of additional O&G emission sources are as follows:

- 1. Expand basin factor inputs to allow entry of fugitive component counts for all service types across all well types.
- 2. Add source categories to capture production phase emissions from water pump engines, hydraulic fracturing engines, and workover rig engines.

Appendix A Permian Basin Factors Comparison

Table A1. Permian basin factors comparison for select source categories.

	0	Grant et al.				
Data Category	Current Value	Current Reference	(2016)			
Associated Gas						
Gas Venting Rate (MCF gas/BBL Oil)	0.004	NM_2013	not available			
Fraction of Gas Vented	0.055	EPA_2015d	not available			
Flaring Control Efficiency (%)	98%	CENSARA_STUDY_2012_EXTENSION	not available			
Flaring Capture Efficiency (%)	100%	CENSARA_STUDY_2012_EXTENSION	not available			
	Crude Oil Tanks					
Crude Oil Fraction directed to Tanks	100%	CENSARA_STUDY_2012_EXTENSION	not available			
Fraction of Oil Tanks with Flares	15%	EPA_2015d	27% ^{1,2}			
Average VOCs Loss (Ib VOCs/BBL Crude Oil)	1.60	CENSARA_STUDY_2012_EXTENSION	1.60			
Flaring Capture Efficiency (%)	100%	CENSARA_STUDY_2012_EXTENSION	not available			
Flaring Control Efficiency (%)	98%	CENSARA_STUDY_2012_EXTENSION	not available			
Gas Venting Rate (MCF gas/BBL Crude Oil)	0.02	CENSARA_STUDY_2012_EXTENSION	not available			
	Fugitives - Gas Wells		_			
Gas Wells - Number of Valves	19	CENSARA_STUDY_2012_EXTENSION	19			
Gas Wells - Number of Connectors	43	CENSARA_STUDY_2012_EXTENSION	43			
Gas Wells - Number of Flanges	29	CENSARA_STUDY_2012_EXTENSION	29			
Gas Wells - Number of Open Ended Lines	3	CENSARA_STUDY_2012_EXTENSION	3			
Gas Wells - Count of Compressor Seals	0	CENSARA_STUDY_2012_EXTENSION	not available			
Gas Wells - Number of Pump Seals	0	CENSARA_STUDY_2012_EXTENSION	2 ¹			
Gas Wells - Methane Leak rate/compressor per hour	12	CENSARA_STUDY_2012_EXTENSION	not available			
Gas Wells - Number of wells/ lateral compressor	35	CENSARA_STUDY_2012_EXTENSION	not available			
Gas Wells - Number of Others	Field not availab	le in Basin Factor Table	10			
Fugitives - Oil Wells						
Light Oil Wells Service - Number of Valves	16	CENSARA_STUDY_2012_EXTENSION	16			
Light Oil Wells Service - Number of Pump Seals	0	CENSARA_STUDY_2012_EXTENSION	21			
Light Oil Wells Service - Number of Connectors	58	CENSARA_STUDY_2012_EXTENSION	58			
Light Oil Wells Service - Number of Flanges	12	CENSARA_STUDY_2012_EXTENSION	12			
Light Oil Wells Service - Number of Open Ended Lines	2	CENSARA_STUDY_2012_EXTENSION	10			
Oil Wells - Number of Others Field not available in Basin Factor Table						

	O	Grant et al.				
Data Category	Current Value Current Reference		(2016)			
Hydraulic Fracturing						
Hydraulic Fracture Horsepower (HP)	2,313		1,258			
Hydraulic Fracture Load Factor	0.36		0.63			
Number of Stages per Fracturing Event (count)	16.80	TX_ERG_STUDY_2014_EXTENSION	5.75			
Total Duration for fracturing (hrs/year)	1.38	TX_ERG_STUDY_2014_EXTENSION	1.50			
Number of fracturing engines per fracturing event						
(count)	9.80	TX_ERG_STUDY_2014_EXTENSION	3.50			
Alternate Hyrdraulic Fracture Emission Factor						
(grams/HP-HR)	0.00	CENSARA_STUDY_2012	not available			
	Liquids Unloading - Gas Wells					
Annual Frequency of Events (# DAYS)	5.00	CENSARA_STUDY_2012_EXTENSION	5.00			
Volume of Gas Flared (MCF/event)	50.00	CENSARA_STUDY_2012_EXTENSION	0.00 ¹			
Volume of Gas Vented (MCF/event)	50.00	CENSARA_STUDY_2012_EXTENSION	50.00			
Control Method Used	FLARE	CENSARA_STUDY_2012_EXTENSION	not available			
Fraction of Liquids Unloading Controlled	0.50	CENSARA_STUDY_2012_EXTENSION	0.00 ¹			
Control Efficiency (%)	98.00	CENSARA_STUDY_2012_EXTENSION	not available			
	Pneumatic Devices - Gas Wells					
Gas wells: Number of No Bleed devices (COUNT)	0.00	CENSARA_STUDY_2012_EXTENSION	not available			
Gas wells: Bleed rate, No Bleed devices						
(SCF/HR/DEVICE)	0.00	CENSARA_STUDY_2012_EXTENSION	not available			
Gas wells: Number of Low Bleed devices (COUNT)	0.09	EPA_2015d	not available			
Gas wells: Bleed rate, Low Bleed devices						
(SCF/HR/DEVICE)	3.15	CENSARA_STUDY_2012_EXTENSION	not available			
Gas wells: Number of High Bleed devices (COUNT)	0.07	EPA_2015d	not available			
Gas wells: Bleed rate, High Bleed devices						
(SCF/HR/DEVICE)	32.07	CENSARA_STUDY_2012_EXTENSION	not available			
Gas wells: Number of Intermittent Bleed devices						
(COUNT)	0.43	EPA_2015d	not available			
Gas wells: Bleed rate, Intermittent Bleed devices						
(SCF/HR/DEVICE)	8.58	CENSARA_STUDY_2012_EXTENSION	not available			

	0	Grant et al.		
Data Category	Current Value	Current Reference	(2016)	
Gas well: Number of total devices (COUNT)	Direct comp	1.19		
Gas wells: Bleed rate, weighted average across all	Direct comp	Direct comparison not possible		
device types (SCF/HR/DEVICE)		anson not possible	8.79	
	Pneumatic Devices - Oil Wells			
Oil wells: Number of No Bleed devices (COUNT)	0.00	CENSARA_STUDY_2012_EXTENSION	not available	
Oil wells: Bleed rate, No Bleed devices				
(SCF/HR/DEVICE)	0.00	CENSARA_STUDY_2012_EXTENSION	not available	
Oil wells: Number of Low Bleed devices (COUNT)	0.26	EPA_2015d	not available	
Oil wells: Bleed rate, Low Bleed devices				
(SCF/HR/DEVICE)	3.15	CENSARA_STUDY_2012_EXTENSION	not available	
Oil wells: Number of High Bleed devices (COUNT)	0.04	EPA_2015d	not available	
Oil wells: Bleed rate, High Bleed devices				
(SCF/HR/DEVICE)	32.07	CENSARA_STUDY_2012_EXTENSION	not available	
Oil wells: Number of Intermittent Bleed devices				
(COUNT)	0.28	EPA_2015d	not available	
Oil wells: Bleed rate, Intermittent Bleed devices				
(SCF/HR/DEVICE)	5.25		not available	
Gas well: Number of total devices (COUNT)	Direct comp	arison not possible	0.43	
Gas wells: Bleed rate, weighted average across all	Direct comparison not possible			
device types (SCF/HR/DEVICE)			5.24	
	Produced Water		I	
Fraction of Produced Water sent to Tanks	100%	CENSARA_STUDY_2012_EXTENSION	not available	
Gas Wells: Average Loss of Methane (lb CH4/BBL)	0.11	CENSARA_STUDY_2012_EXTENSION	not available	
CBM Wells: Average Loss of Methane (lb CH4/BBL)	0.11	CENSARA_STUDY_2012_EXTENSION	not available	
Oil Wells, Low Pressure: Average Loss of Methane (lb				
CH4/BBL)	0.00	CENSARA_STUDY_2012_EXTENSION	not available	
Oil Wells, Regular Pressure: Average Loss of Methane				
(lb CH4/BBL)	0.03	CENSARA_STUDY_2012_EXTENSION	not available	
Gas Wells: Average Loss of VOC (lb/bbl)	Direct comp	0.01		
Well Completions				
Oil Well - Volume of Gas Vented, unconventional	736	CENSARA_STUDY_2012_EXTENSION	0	

	0	Grant et al.	
Data Category	Current Value	Current Reference	(2016)
Oil Well - Volume of Gas Vented, conventional	736	CENSARA_STUDY_2012_EXTENSION	0
Gas Well - Volume of Gas Vented, unconventional	9,000	EPA_2012	0
Gas Well - Volume of Gas Vented, conventional	736	CENSARA_STUDY_2012_EXTENSION	0
CBM Well - Volume of Gas Vented, unconventional	9,000	EPA_2012	0
CBM Well - Volume of Gas Vented, conventional	736	CENSARA_STUDY_2012_EXTENSION	0
Fraction with Flaring	28%	NM_2013	0
Flaring Control Efficency (%)	98%	CENSARA_STUDY_2012_EXTENSION	not available
Flaring Capture Efficency (%)	90%	NM_2013	not available
Fraction of wells that are Green Completed	36%	NM_2013	0

¹ Basin factor update recommended ² Alternative data source: Email from Mark Pring (ERG), May 2, 2017