Improving ozone modeling in the Southeast US: how it affects background ozone estimates

Daniel J. Jacob

with Katie Travis

Karen Yu

Lei Zhu

Lu Hu
Models tend to overestimate surface ozone in the Southeast US in summer.

HTAP model intercomparison:

SE USA 30-36N 90-80W 0-0.8km

24-h ozone

Mean Bias = 7.2 ppb
r = 0.61

sites = 6

We need to understand this bias and the implications for ozone background estimates

Fiore et al. [2009]
SEAC4RS campaign out of Houston (Aug-Sep 2013): NASA DC-8 aircraft with full chemical payload

Ozone below 1.5 km

NO$_x$ below 1.5 km
Near-real-time GEOS-Chem simulation during SEAC⁴RS

GEOS-Chem with 0.25°x0.3125° resolution over North America
nested in global simulation with 2°x2.5° resolution
NASA GEOS-FP assimilated meteorological data
Anthropogenic US emissions from EPA NEI 2011

O₃ (ppb) in surface air - circles are aircraft data below 1 km

Karen Yu, Patrick Kim, Jenny Fisher, Katie Travis, Lei Zhu (Harvard)
Correcting model mixing depths

Model comparison to aircraft lidar observations (R. Ferrare, LaRC)

Summertime drying out in GEOS-FP causes excessive mixed layer depths

Zhu et al., submitted
Finding: NEI NO\textsubscript{x} emissions are 2x too high

Aug-Sep 2013 surface NO\textsubscript{x} emissions in Southeast US
NEI13 + soils + open fires [Gg]

Reduce mobile+industry emissions by 60%

Observations by
G. Huey, J. Dibb, T. Ryerson

SEAC4RS median vertical profiles

Nitrate wet deposition flux (obs in circles)

-7% US bias (+80% with NEI)
Comparison to OMI NO$_2$ tropospheric columns

OMI NO$_2$ (BEHR)

OMI NO$_2$ (NASA)

GEOS-Chem with reduced NO$_x$ emissions

-18% vs. BEHR

-11% vs. NASA

Low bias in GEOS-Chem is due to lightning, not surface emissions

Travis et al., submitted
Lightning makes major contribution to OMI NO$_2$ tropospheric column in summer

Mean SEAC4RS NO$_2$ profile over Southeast

GEOS-Chem low bias in upper troposphere driven by NO/NO$_2$ chemistry

Travis et al., submitted
Boundary layer NO$_x$, ozone, ozone production efficiency are well simulated after NO$_x$ emissions are decreased

Concentrations below 1.5 km

Ozone vs. NO$_x$ oxidation products

Observed slope = 18.6
Model slope = 16.7

Mean model bias for ozone is +2 ppb; before decreasing NO$_x$ emissions it was +16 ppb

Travis et al., submitted
Ozonesonde data in Southeast US are also well simulated.
But model is still too high by 9 ppb for surface ozone: cause is excessive boundary layer mixing

Mean MDA8 ozone (ppb)
Jun-Aug 2013

PDF of MDA8 ozone
Jun-Aug 2013

• Midday ozonesondes show 7 ppb decrease from 1.5 km to 0.2 km, not GEOS-Chem
• Excessive boundary layer mixing in GEOS-Chem caused by excessive dryness

SEACIONS ozonesondes
11am-2pm below 1.5 km

Travis et al., submitted
Ozone background over Gulf of Mexico is well simulated

Excessive ozone over the Gulf is not the problem

SEAC4RS Median Vertical Profiles: Gulf of Mexico

Altitude, km

O$_3$, ppbv

NO$_X$, ppbv

Travis et al., submitted
N. American background ozone: comparison to SEAC4RS

Background simulation shuts off all anthropogenic emissions in N America

Observed
GEOS-Chem (standard)
GEOS-Chem (background)

Anthropogenic emissions increase NO$_x$ only by factor 2, enough for 20 ppb increase in ozone

Travis et al., in prep.
Tropospheric ozone evaluation of current GEOS-Chem version

OMI satellite data validated with ozonesondes, reprocessed with uniform prior

OMI 700-400 hPa
– 3.6 ppb bias

GEOS-Chem
with OMI averaging kernels

difference

Hu et al., in prep.
N. American ozone background estimated with GEOS-Chem

Simulation shutting off all anthropogenic N American emissions

Mean MDA8 ozone background for summer (JJA)

Current model

Zhang et al. [2011]

- Northward shift in western US maximum (updated lightning)
- Ring of elevated values along Gulf Coast is gone
- Otherwise not much difference – despite lots of change in model
- Need to worry about soil moisture!

Travis et al., in prep.
Why is PBL mxing excessive in GEOS-Chem?

Normalized ozone profiles at Huntsville, AL in August 2013

Model underestimates cloudiness, probably due to soil drying out over summer

Katie Travis, in prep.
Model of SEAC4RS period shows little sensitivity to grid resolution: implies that 2°x2.5° is acceptable for calculations of background ozone

Yu et al. [2016]